Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Mcdonald Observatory Astronomers Discover New Type Of Pulsating White Dwarf Star
by Staff Writers
Austin TX (SPX) May 02, 2008


McDonald Observatory astronomers Michael Montgomery, Kurtis Williams, and Steven DeGennaro discovered that the star SDSS J142625.71+575218.3 is the first pulsating carbon white dwarf. Credit: Sloan Digital Sky Survey (SDSS) Collaboration

University of Texas at Austin astronomers Michael H. Montgomery and Kurtis A. Williams, along with graduate student Steven DeGennaro, have predicted and confirmed the existence of a new type of variable star with the help of the 2.1-meter Otto Struve Telescope at McDonald Observatory. The discovery will be announced in today's issue of Astrophysical Journal Letters.

Called a "pulsating carbon white dwarf," this is the first new class of variable white dwarf star discovered in more than 25 years. Because the overwhelming majority of stars in the universe - including the Sun - will end their lives as white dwarfs, studying the pulsations (i.e., variations in light output) of these newly discovered examples gives astronomers a window on an important endpoint in the lives of most stars.

A white dwarf star is the leftover remnant of a Sun-like star that has burned all of the nuclear fuel in its core. It is extremely dense, packing half to 1.5 times the Sun's mass into a volume about the size of Earth. Until recently, there have been two main types of white dwarfs known: those that have an outer layer of hydrogen (about 80 percent), and about those with an outer layer of helium (about 20 percent), whose hydrogen shells have somehow been stripped away.

Last year, University of Arizona astronomers Patrick Dufour and James Liebert discovered a third type of white dwarf star, still more rare. For reasons that are not understood, these "hot carbon white dwarfs" have had both their hydrogen and helium shells stripped off, leaving their carbon layer exposed. Astronomers suspect these could be among the most massive white dwarfs of all, and are the remnants of stars slightly too small to end their lives in a supernova explosion.

After these new carbon white dwarfs were announced, Montgomery calculated that pulsations in these stars were possible. Pulsating stars are of interest to astronomers because the changes in their light output can reveal what goes on in their interiors - similar to the way geologists study seismic waves from earthquakes to understand what goes on in Earth's interior. In fact, this type of star-study is called "asteroseismology."

So, Montgomery and Williams' team began a systematic study of carbon white dwarfs with the Struve Telescope at McDonald Observatory, looking for pulsators. DeGennaro discovered that a star about 800 light-years away in the constellation Ursa Major, called SDSS J142625.71+575218.3, fits the bill. Its light intensity varies regularly by nearly two percent about every eight minutes.

"The discovery that one of these stars is pulsating is remarkably important," said National Science Foundation astronomer Michael Briley. "This will allow us to probe the white dwarf's interior, which in turn should help us solve the riddle of where the carbon white dwarfs come from and what happens to their hydrogen and helium." The research was funded by NSF and the Delaware Asteroseismic Research Center.

The star lies about ten degrees east northeast of Mizar, the middle star in the handle of the Big Dipper. This white dwarf has about the same mass as our Sun, but its diameter is smaller than Earth's. The star has a temperature of 35,000 degrees Fahrenheit (19,500 C), and is only 1/600th as bright as the Sun.

None of the other stars in their sample were found to pulsate. Given the masses and temperatures of the stars in their sample, SDSS J142625.71+575218.3 is the only one expected to pulsate based on Montgomery's calculations.

The astronomers speculate that the pulsations are caused by changes in the star's carbon outer envelope as the star cools down from its formation as a hot white dwarf. The ionized carbon atoms in the star's outer layers return to a neutral state, triggering the pulsations.

There is a chance that the star's variations might have another cause. Further study is needed, the astronomers say. Either way, studying these stars will shed light on the unknown process that strips away their surface layers of hydrogen and helium to lay bare their carbon interiors.

.


Related Links
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Oldest Known Objects Are Surprisingly Immature
Boston MA (SPX) Apr 30, 2008
Some of the oldest objects in the Universe may still have a long way to go, according to a new study using NASA's Chandra X-ray Observatory. These new results indicate that globular clusters might be surprisingly less mature in their development than previously thought. Globular clusters, dense bunches of up to millions of stars found in all galaxies, are among the oldest known objects in ... read more


STELLAR CHEMISTRY
Shanghai's Own Moon Vehicle Passes Test

China Blasts Off First Data Relay Satellite

KAGUYA Captures First Successful Shooting Of A Full Earth-Rise

New NASA Moon Mission Begins Integration Of Science Instruments

STELLAR CHEMISTRY
Glaciers Reveal Martian Climate Has Been Recently Active

Andrews Space Wins NASA Exploration Contract

Artificial Intelligence Boosts Science From Mars

New Online Map Reveals Evidence Of The Forces That Once Shaped Mars

STELLAR CHEMISTRY
Design Begins On Twin Probes That Will Study Radiation Belts

SKorea's first astronaut in hospital with back pain

NASA Officials Turn To Air Force For Guppy Evaluation

Explorers Flight Launch Set For June

STELLAR CHEMISTRY
China Launches New Space Tracking Ship To Serve Shenzhou VII

Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

Brazil To Deepen Space Cooperation With China

STELLAR CHEMISTRY
US Congressional Subcommittee Examines The Status Of The ISS

Expedition 16's Whitson Hands Over Command Of Station

Russia Needs Billions More To Complete It's ISS Segment

NASA Awards Space Station Water Contract To Hamilton Sundstrand

STELLAR CHEMISTRY
Zenit Rocket Puts Israeli Satellite Into Orbit

Khrunichev And ILS Announce Quality Initiative

Military And Civilian Telecom Satellites Are Readied For Third Ariane 5 Mission Of 2008

Israeli communications satellite launched

STELLAR CHEMISTRY
Exo-Planet Roadmap Advisory Team Appointed By ESA

Plan To Identify Watery Earth-Like Planets Develops

Astronomers Listen To An Exoplanet-Host Star And Find Its Birthplace

New Rocky Planet Found In Constellation Leo

STELLAR CHEMISTRY
NASA Ames Partners With m2mi For Small Satellite Development

Graphene-Based Gadgets May Be Just Years Away

Loral Spins A Giant Web In Space As First ICO Bird Comes Alive

COM DEV Launches Advanced Space-Based AIS Validation Nanosatellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement