Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Materials Research Advances Reliability Of Faster Smart Sensors
by Staff Writers
Raleigh NC (SPX) Apr 22, 2010


New findings on how "smart sensors" function gives researchers the ability to improve their reliability. Image courtesy of Alok Gupta and J. Narayan, NC State.

In military and security situations, a split second can make the difference between life and death, so North Carolina State University's development of new "smart sensors" that allow for faster response times from military applications is important. Equally important is new research from NC State that will help ensure those sensors will operate under extreme conditions - like those faced in Afghanistan or elsewhere.

"We've taken a sensor material called vanadium oxide and integrated it with a silicon chip," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and co-author of the research.

"Normally sensors are hardwired to a computer. But now the sensor is part of the computer chip itself. The advantage is that now you have a smart sensor that can sense, manipulate and respond to information."

For example, such smart sensors allow for the development of infrared sensors that can respond more quickly in military or security applications.

The creation of these smart sensors is possible due to Narayan's discovery of "domain matching epitaxy." This model allows the creation of single, defect-free crystal layers of different materials - which amplify the transmission of electronic signals between those materials.

New findings presented by a team of NC State researchers (published in Applied Physics Letters and Journal of Applied Physics) now describe how vanadium oxide sensors work in conjunction with the silicon chips to which they are attached.

Understanding how these sensors function gives researchers the ability to improve the reliability of these smart sensors, and account for variable conditions the sensors may be exposed to, such as various temperatures and pressures a sensor may face in Afghanistan or Iraq.

The research, which was funded by the National Science Foundation, was co-authored by Narayan, Dr. Roger Narayan, a professor of biomedical engineering at NC State, and NC State Ph.D. students Tsung Han Yang, Ravi Aggarwal, A. Gupta, and H. Zhou. The research was presented April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco. The paper, titled "Mechanism of Semiconductor Metal Transition of Vanadium Oxide Thin Films," won the First Prize in the MRS Symposium N: Functional Oxide Nanostructures and Heterostructures.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering. The Department of Biomedical Engineering is a joint department under both NC State's College of Engineering and the University of North Carolina at Chapel Hill.

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
NC State Research May Revolutionize Ceramics Manufacturing
Raleigh NC (SPX) Apr 14, 2010
Researchers from North Carolina State University have developed a new way to shape ceramics using a modest electric field, making the process significantly more energy efficient. The process should result in significant cost savings for ceramics manufacturing over traditional manufacturing methods. Ceramics make up significant components of an array of products, including insulators, spark ... read more


TECH SPACE
Seed Bank For The Moon

Craters Around Lunar Poles Could Be Electrified

NASA Announces Winners Of 17th Annual Great Moonbuggy Race

Autarky In Space

TECH SPACE
Clues About Mars Evolution Revealed

Obama sets new course to conquer the final frontier

Spirit Awaits Winter At Troy

Picking Up Pace To Endeavour Crater

TECH SPACE
Japanese spacecraft to land in Australian outback

Apollo 13 - NASA's Successful Failure

NASA Selects Community College Scholars For Chance To Design Space Rovers

NASA Sets Payload Record During Parachute Tests

TECH SPACE
China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

China To Complete Wenchang Space Center By 2015

China To Conduct Maiden Space Docking In 2011

TECH SPACE
Japan astronaut solves bubble puzzle

Celebrating The ISS And Preparing For The Future

Faulty ISS cooling system could force new space walk: NASA

US astronauts end mission's last space walk

TECH SPACE
Russia Confirms Plans Of Rocket Launch From French Guiana In 2010

Task Force To Conduct Quality Audit On Ariance Launch Campaign Process

SES-1 Satellite Arrived At Baikonour Launch Base

Ariane 5's Launch With ASTRA 3B and COMSATBw-2 Set For April 9

TECH SPACE
Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

TECH SPACE
Materials Research Advances Reliability Of Faster Smart Sensors

Online conferencing takes off as volcano grounds planes

IBM raises earnings outlook as technology spending improves

NGC Completes System Development Of B-2 Radar Modernization Program




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement