Subscribe free to our newsletters via your
. 24/7 Space News .




CLONE AGE
Material screening method allows more precise control over stem cells
by Staff Writers
Madison WI (SPX) Apr 16, 2013


File image.

When it comes to delivering genes to living human tissue, the odds of success come down the molecule. The entire therapy - including the tools used to bring new genetic material into a cell - must have predictable effects.

Now, a new screening process will simplify non-viral transfection, providing a method researchers and clinicians use to find an optimal set of biomaterials to deliver genes to cells.

Developed by William Murphy, the Harvey D. Spangler professor of biomedical engineering at the University of Wisconsin-Madison, the method gives researchers greater control over how cells react to the gene delivery mechanism.

The broader implication is more nuanced, effective control over cell behavior. "We've been exploring using this concept for reprogramming of adult cells, as well as controlling differentiation of stem cell types," Murphy says.

In a current successful approach, researchers use specialized viruses to deliver genetic material to cells.

While efficient, that method also carries a greater risk of turning on unwanted genes or provoking an immune response from the body -making it less attractive for sensitive biomedical applications like controlling stem cell behavior, says Murphy.

His team has developed a process that does not rely on viruses. Rather, the researchers can grow specific calcium phosphate coatings that serve as a medium via which genetic material can be delivered to cells more efficiently.

By matching a coating to a specific application for delivering genes, Murphy has seen up to a 70-fold increase in successful expression of those genes in human stem cells.

"From an application standpoint, the advance could be really impactful, and could enable gene delivery to become an integral part of medical device design and tissue engineering applications," says Murphy.

The process could be critical to further advances in regenerative medicine. Since researchers can apply it to any size or shape of tissue engineering structure, it could help provide engineers a simpler way to build the complex tissue structures required to deliver next-generation drug screening and patient therapies.

Murphy and his collaborators published news of their advance in the March 28, 2013 issue of Nature Scientific Reports.

.


Related Links
University of Wisconsin-Madison
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLONE AGE
3-D biomimetic scaffolds support tissue regeneration from stem cells
New Rochelle, NY (SPX) Jan 14, 2013
Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often grow in a specific pattern or alignment. An innovative method for creating a stretched polymer scaffold that can support complex tissue architectures is described in an a ... read more


CLONE AGE
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

CLONE AGE
Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

NASA spacecraft may have spotted pieces of Soviet spacecraft on Mars

CLONE AGE
Testing Spacesuits in Antarctica, part 1

Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

CLONE AGE
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

CLONE AGE
Unmanned Russian space freighter leaves space station toward fiery end

Europe sets June 5 for launch of space freighter

Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

CLONE AGE
Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

Arianespace receives the second Vega for launch from French Guiana

CLONE AGE
Can One Buy the Right to Name a Planet?

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

CLONE AGE
High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry

Florida Tech professors present 'dark side of dark lightning' at conference




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement