Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
LISA Pathfinder set for launch site
by Staff Writers
Paris (ESA) Sep 02, 2015


LISA Pathfinder launch composite at IABG's space test centre in Ottobrunn, near Munich, Germany, on 31 August 2015, before it departs to the launch site. Slated for launch by Vega in November 2015, ESA's gravitational-wave detection technology demonstrator is ready to begin launch preparations in September at Europe's Spaceport in Kourou, French Guiana. LISA Pathfinder will help to open up a completely new observational window into the gravitational Universe, proving new technologies needed to measure gravitational waves in space. Predicted by Albert Einstein, these waves are ripples in the curvature of spacetime and are produced by massive celestial bodies. Understanding their signature will tell scientists a lot about black holes, compact double stars and other exotic objects. Image courtesy ESA-P. Sebirot, 2015. For a larger version of this image please go here.

LISA Pathfinder, ESA's demonstrator for spaceborne observations of gravitational waves, is ready to leave for Europe's Spaceport in Kourou, French Guiana.

Scheduled for launch on a Vega rocket later this year, the spacecraft was on display today at IABG's test centre in Ottobrunn, near Munich, Germany, where final integration and extensive tests were performed over the past few months. This was the last chance for scientists, engineers and members of the media to see LISA Pathfinder before it is packed for shipping.

"This is an extremely challenging mission that will pave the way for future space-based projects to observe gravitational waves, opening a new window to explore the cosmos," said Paul McNamara, ESA's project scientist. Gravitational waves are ripples in the fabric of spacetime produced by accelerating massive bodies, such as a pair of orbiting black holes. Predicted by Albert Einstein's general theory of relativity in 1915, they are expected to be ubiquitous in the Universe, but have not been directly detected to date.

While ground-based searches for these elusive messengers of gravity have been under way for the past few decades, a gravitational-wave observatory in space would open up new possibilities in this quest. LISA Pathfinder will test the fundamental technologies and instrumentation needed for such an observatory, demonstrating them for the first time in space.

"Gravitational waves are an entirely fresh and different way to study the Universe, providing an important complement to the well-established approach of astronomy, based on observing the light emitted by celestial bodies," says Paul.

Among the anticipated sources of gravitational waves are supernova explosions and double black holes. These objects are thought to be associated with overwhelmingly powerful events. For example, the energy released in gravitational waves during the last few minutes of the merging of just one pair of supermassive black holes is comparable to the total energy emitted as light by all stars and galaxies across the cosmos over the same time.

Scientists are also looking forward to discovering even more, unexpected cosmic sources once they are able to 'listen' to the Universe on this new channel. "But we're not quite there yet, and this is where LISA Pathfinder steps in," says Cesar Garcia Marirrodriga, ESA's project manager.

Despite the enormous energy release in gravitational waves produced by these mighty cosmic events, they should only cause tiny perturbations to the fabric of spacetime. Instruments built to detect them must be capable of making exquisitely precise measurements of extremely small changes in distance between two reference objects.

Typically, for a space-based gravitational wave observatory, this will mean seeing the distance between two 'test masses' separated by around a million kilometres changing by about a millionth of a millionth of a metre.

This requires extraordinary measurement techniques using lasers, with the test masses flying freely in space, each shielded by a surrounding spacecraft from all extraneous influences, such as the solar wind.

LISA Pathfinder will test those crucial underlying technologies in a single spacecraft, with the two test masses separated by only 38 cm. The aim is to prove that the masses can fly through space, untouched but shielded by the spacecraft, and maintain their relative positions to the precision needed to realise a full-up gravitational wave observatory later.

"The extreme precision of measurements and control required in this domain pose a great technical challenge," says Cesar.

"In fact, everything was a challenge in this brand-new class of missions: from the innovative instrumentation, to the new modelling of self-gravitation within the spacecraft, and the very complex integration tests of the spacecraft. "The industrial and scientific teams that undertook these daunting tasks have done an extraordinary job, and now the mission is ready for launch."

After ascent on the Vega rocket, LISA Pathfinder will enter an elliptical orbit around Earth, where it will use its own propulsion system to raise the high point of its orbit. Eventually, after about eight weeks, the spacecraft will reach its operational orbit around the Lagrange point L1, 1.5 million km from Earth towards the Sun.

There, LISA Pathfinder will begin six months of demonstrating the technology for future gravitational-wave observatories in space. "We've made great progress with LISA Pathfinder in the past decade and are very excited to be so close to operating this incredible physics laboratory in space," concludes Paul.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
LISA Pathfinder at ESA
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








PHYSICS NEWS
Gravitational Constant appears universally constant, Pulsar study suggests
Washington DC (SPX) Aug 10, 2015
Gravity, one of the four fundamental forces of nature, appears reassuringly constant across the Universe, according to a decades-long study of a distant pulsar. This research helps to answer a long-standing question in cosmology: Is the force of gravity the same everywhere and at all times? The answer, so far, appears to be yes. Astronomers using the National Science Foundation's (NSF) Gre ... read more


PHYSICS NEWS
Russia Eyes Moon for Hi-Tech Lunar Base

Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

PHYSICS NEWS
One small step for man as astronaut controls robot from space

What Happened to Early Mars' Atmosphere

ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

PHYSICS NEWS
New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

Opportunity found in lack of diversity in US tech sector

Boeing Revamps Production Facility for Starliner Flights

In Virginia, TechShop lets 'makers' tinker, innovate

PHYSICS NEWS
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

PHYSICS NEWS
Soyuz rocket with three astronauts launches towards ISS

Russian ISS Crew's Next Spacewalk Planned for February 2016

First Dane in space begins long trip to repositioned ISS

Mogensen begins busy ISS tour

PHYSICS NEWS
US Launches Atlas V Rocket With Navy Communications Satellite After Delay

FCube facility enters operations with fueling of Soyuz Fregat upper stage

US Navy to Launch Folding-Fin Ground Attack Rocket on Scientific Mission

SpaceX delays next launch after blast

PHYSICS NEWS
Earth observations show how nitrogen may be detected on exoplanets, aiding search for life

Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

PHYSICS NEWS
Using ultrathin sheets to discover new class of wrapped shapes

Starshade identifies celestial objects at McMath-Pierce Solar Telescope

The multiferroic sandwich

Microscopic animals inspire innovative glass research




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.