Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Jekyll and Hyde star morphs from radio to X-ray pulsar and back again
by Staff Writers
Charlottesville, VA (SPX) Oct 02, 2013


Neutron star and its companion shown when the accretion has stopped and the neutron star is emitting radio pulses. Credit: Bill Saxton; NRAO/AUI/NSF.

Astronomers have uncovered the strange case of a neutron star with the peculiar ability to transform from a radio pulsar into an X-ray pulsar and back again. This star's capricious behavior appears to be fueled by a nearby companion star and may give new insights into the birth of millisecond pulsars.

"What we're seeing is a star that is the cosmic equivalent of 'Dr. Jekyll and Mr. Hyde,' with the ability to change from one form to its more intense counterpart with startling speed," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va.

"Though we have known that X-ray binaries - some of which are observed as X-ray pulsars - can evolve over millions of years to become rapidly spinning radio pulsars, we were surprised to find one that seemed to swing so quickly between the two."

Neutron stars are the superdense remains of massive stars that have exploded as supernovas. This particular neutron star, dubbed IGR J18245-2452, is located about 18,000 light-years from Earth in the constellation Sagittarius in a cluster of stars known as M28.

It was first identified as a millisecond radio pulsar in 2005 with the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) and then later rediscovered as an X-ray pulsar by another team of astronomers in 2013.

The two teams eventually realized they were observing the same object, even though it was behaving very differently depending on when it was observed. Additional observations and archival data from other telescopes confirmed the on-again, off-again cycle of X-ray and radio pulsations.

"Various observations of one particular star over the years and with different telescopes have revealed vastly different things - at one time a pulsar and the other an X-ray binary," said Alessandro Papitto of the Institute of Space Sciences (Consejo Superior de Investigaciones Cientificas - Institut d'Estudis Espacials de Catalunya) in Barcelona, Spain, and lead author of a paper published in the journal Nature.

"This was particularly intriguing because radio pulses don't come from an X-ray binary and the X-ray source has to be long gone before radio signals can emerge."

The answer to this puzzle was found in the complex interplay between the neutron star and its nearby companion.

X-ray binaries, as their name implies, occur in a two-star system in which a neutron star is accompanied by a more normal, low-mass star. The smaller but considerably more massive neutron star can draw off material from its companion, forming a flattened disk of gas around the neutron star. Gradually, as this material swirls down to the surface of the neutron star, it becomes superheated and generates intense X-rays.

Astronomers believed that this process of accretion continued, mostly unabated, for millions of years. Eventually, the material would run out and the accretion would stop, along with the X-ray emission.

Without the influx of new material, the neutron star's powerful magnetic fields are able to generate beams of radio waves that sweep across space as the star rotates, giving the pulsar its characteristic lighthouse-like appearance.

Most radio pulsars rotate a few tens of times each second and - if left to their own devices - will slow down over many thousands of years.

If the neutron star begins life as an X-ray binary, however, the matter accumulating on its surface causes the neutron star to "spin up," increasing its rate of rotation until it spins hundreds of times each second. When this accretion process stops, the result is a millisecond pulsar.

During their observations, the researchers detected outbursts of X-ray pulsations that went on for approximately one month and then abruptly stopped. Within a few days, the radio pulses once again emerged. These wild swings indicated that the material from the accretion disk was falling onto the neutron star in fits and starts, rather than in a long and constant stream as astronomers theorized.

An earlier study of another system with the GBT detected the first evidence of an accretion disk around a neutron star, which helped establish the link between low-mass X-ray binaries and pulsars.

The new data support this link but also show for the first time that the evolution process, which was thought to take perhaps millions of years, is actually more complex and can occur in episodic bursts that can last just a few days or weeks.

"This not only demonstrates the evolutionary link between accretion and rotation-powered millisecond pulsars," said Ransom, "but also that some systems can swing between the two states on very short timescales."

The X-ray source was discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) and follow-up X-ray observations were performed by the XMM-Newton, Swift, and Chandra satellites. Radio observations were made by the GBT, the Parkes radio telescope, the Australia Telescope Compact Array, and the Westerbork Synthesis Radio Telescope.

.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Astronomers find missing link pulsar
Canberra, Australia (SPX) Sep 30, 2013
An international team of astronomers using CSIRO radio telescopes and other ground and space-based instruments has caught a small star called a pulsar undergoing a radical transformation, described today in the journal Nature. "For the first time we see both X-rays and extremely fast radio pulses from the one pulsar. This is the first direct evidence of a pulsar changing from one kind of o ... read more


STELLAR CHEMISTRY
China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

STELLAR CHEMISTRY
Scientists find a martian igneous rock that is surprisingly Earth-like

Martian chemical complicates hunt for life's clues

Researchers describe unusual Mars rock

NASA Rover Inspects Pebbly Rocks at Martian Waypoint

STELLAR CHEMISTRY
Tokyo gadget show offers glimpse of tomorrow

Astronauts Practice Launching in NASA's New Orion Spacecraft

"GRAVITY" is Almost Here

International Partnership Releases Space Exploration Benefits Paper

STELLAR CHEMISTRY
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

STELLAR CHEMISTRY
Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

Station Crew Readies for Cygnus' Sunday Arrival

American, two Russians take shortcut to space

STELLAR CHEMISTRY
UFO? Star cluster? No, it's Falcon 9's jettisoned fuel

ILS Proton Successfully Launches ASTRA 2E for SES

APSCC 2013 reaffirms Arianespace's focus on the Asia-Pacific region

Arianespace and Astrium sign deal to begin production of 18 new Ariane 5 vehicles

STELLAR CHEMISTRY
Astronomers create first cloud map of distant planet

How Engineers Revamped Spitzer to Probe Exoplanets

ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

STELLAR CHEMISTRY
New sensor could prolong the lifespan of high-temperature engines

Paradigm shift: Need something in space? Print it, don't ship it

China to be world's top gold buyer this year: experts

NGC Completes Safety of Flight Testing on Common Infrared Countermeasure System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement