Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Investigating How Spiders Spin Their Silk, Researchers Unravel A Key Step
by Staff Writers
Munich, Germany (SPX) May 17, 2010


Spider silk consists of protein molecules, long chains comprising thousands of amino-acid elements. X-ray structure analyses show that the finished fiber has areas in which several protein chains are interlinked via stable physical connections. These connections provide the high stability. Between these connections are unlinked areas that give the fibers their great elasticity.

Five times the tensile strength of steel and triple that of the currently best synthetic fibers: Spider silk is a fascinating material. But no one has thus far succeeded in producing the super fibers synthetically.

How do spiders form long, highly stable and elastic fibers from the spider silk proteins stored in the silk gland within split seconds? Scientists from the Technische Universitaet Muenchen (TUM) and the University of Bayreuth have now succeeded in unraveling the secret. They present their results in the current issue of the prestigious scientific journal Nature.

"The high elasticity and extreme tensile strength of natural spider silk are unmatched, even by fibers produced from pure spider silk proteins," says Professor Horst Kessler, Carl-von-Linde Professor at the Institute for Advanced Study of the TU Muenchen.

That highlights a key question in the artificial production of stable spider silk fibers: How do spiders manage to keep the high concentrations of raw material available in the silk gland, ready to produce the high tensile strength fiber at a moment's notice. Thomas Scheibel has been pursuing the secret of spider silk for years, until 2007 at TUM and since then at the University of Bayreuth.

Spider silk consists of protein molecules, long chains comprising thousands of amino-acid elements. X-ray structure analyses show that the finished fiber has areas in which several protein chains are interlinked via stable physical connections. These connections provide the high stability. Between these connections are unlinked areas that give the fibers their great elasticity.

The situation within the silk gland is, however, very different: The silk proteins are stored in high concentrations in an aqueous environment, awaiting deployment. The areas responsible for interlinking may not approach each other too closely; otherwise the proteins would clump up instantaneously. Hence, these molecules must have some kind of special storage configuration.

X-ray structure analysis, which is so successful in other domains, was of little help here, since it can only be used to analyze crystals. And up to the instant in which the solid silk fiber is formed, everything takes place in solution. The method of choice was therefore nuclear magnetic resonance spectroscopy (NMR).

Using the equipment of the Bavarian NMR Center, Franz Hagn, a biochemist from Horst Kessler's work group at the Institute for Advanced Study (TUM-IAS) at the TU Muenchen, managed to unravel the structure of a control element responsible for the formation of the solid fiber. Now the researchers could, together with Lukas Eisoldt and John Hardy from Thomas Scheibel's group, shed light on this control element's mode of operation.

"Under storage conditions in the silk gland these control domains are connected pair-wise in such a way that the interlinking areas of both chains can not lie parallel to each other," Thomas Scheibel explains. "Interlinking is thus effectively prevented." The protein chains are stored with the polar areas on the outside and the hydrophobic parts of the chain on the inside, ensuring good solubility in the aqueous environment.

When the protected proteins enter the spinning duct, they encounter an environment with an entirely different salt concentration and composition. This renders two salt bridges of the control domain unstable, and the chain can unfold. Furthermore, the flow in the narrow spinning duct results in strong shear forces. The long protein chains are aligned in parallel, thus placing the areas responsible for interlinking side by side. The stable spider silk fiber is formed.

"Our results have shown that the molecular switch we discovered at the C-terminal end of the protein chain is decisive, both for safe storage and for the fiber formation process," says Franz Hagn. An important foundation for these results was established through cooperation of Thomas Scheibel's group with Professor Andreas Bausch's workgroup at the Physics Department at TUM.

Using microsystem technology, they developed an artificial spinning duct. Meanwhile the Bayreuth scientists are working intensively to develop a biomimetic spinning apparatus, within the framework of a federally supported joint project with industrial partners. The potential applications are countless, from resorbable surgical suture material to technical fibers for the automotive industry.

The research has been supported through the provision of testing and measuring time by the Bavarian NMR Center, through the Deutsche Forschungsgemeinschaft (DFG), the Excellence Cluster Center for Integrated Protein Science Munich (CIPSM) and the Institute for Advanced Study at the TU Muenchen, where Horst Kessler has been working as Senior Fellow since becoming Emeritus. Franz Hagn's work is funded by the Bayerisches Elitenetzwerk CompInt, co-author John G. Hardy from the Alexander von Humboldt Foundation.

.


Related Links
Technische Universitaet Muenchen
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New Metamaterial Device May Lead To See-Through Cameras And Scanners
Washington DC (SPX) May 10, 2010
Devices that can mimic Superman's X-ray vision and see through clothing, walls or human flesh are the stuff of comic book fantasy, but a group of scientists at Boston University (BU) has taken a step toward making such futuristic devices a reality. The researchers will present their device at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, whic ... read more


TECH SPACE
NASA Invites Public To Take Virtual Walk On Moon

LRO Team Helps Track Laser Signals To Russian Rover Mirror

Lunar Polar Craters May Be Electrified

Seed Bank For The Moon

TECH SPACE
Final Attempts To Hear From Mars Phoenix Scheduled

Volcanic Ash In Meridiani Planum

Mars Image Takes Earth Photo Event To A New World

Mars500 European Crew Selected And Ready To Go

TECH SPACE
NASA To Fund Innovative Museum Exhibits And Planetarium Shows

Chaotic space traffic needs rules, less secrecy: US general

Orphans Of Apollo: Los Angeles Film Premiere

DLR Tests New Sharp-Edged Spacecraft

TECH SPACE
Seven More For Shenzhou

China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

TECH SPACE
Atlantis docks with space station on final mission

Boeing Provides New Antenna And Batteries For Shuttle Mission To ISS

Astronauts to make first space walk of last Atlantis mission

A New 'Dawn' In Space

TECH SPACE
NASA Uses 'Polka Dots' For Precision Measurements

Soyuz Consultation Committee Sets Inaugural Launch For Fourth Quarter Of 2010

Integration Of Soyuz' First And Second Stages Is Complete

Arianespace Signs Contract With HUGHES To Launch Jupiter

TECH SPACE
Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

TECH SPACE
Investigating How Spiders Spin Their Silk, Researchers Unravel A Key Step

Google abandoning online store for Nexus One smartphone

Apple's Jobs contacted Gizmodo to retrieve iPhone prototype

4G wireless technology slowly starts out in Scandinavia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement