Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
International research group shows that the aging of organic aerosols is caused by OH radicals
by Staff Writers
Mainz, Germany (SPX) Oct 10, 2012


Processes investigated in the MUCHACHAS Project. Image courtesy AG Hoffmann

Atmospheric aerosol particles have a significant effect on climate. An international team of researchers has now discovered that a chemical process in the atmosphere called aging determines to a major extent the concentration and the characteristics of aerosol particles.

To date, this aspect has not been accounted for in regional and global climate models. In the Muchachas [Multiple Chamber Aerosol Chemical Aging Experiments] project, the team has not only managed to demonstrate the effects of aging but has also been able to measure these. Their findings have been published in the specialist journal Proceedings of the National Academy of Sciences of the USA (PNAS).

The quality of air is determined to a considerable extent by aerosol particles. In the form of a fine dust, they are believed to be responsible for a series of respiratory diseases and cardiovascular disorders. In addition, aerosol particles also have various effects on atmospheric radiation balance.

Aerosols make a direct contribution to radiation levels in the cloud-free atmosphere by dispersing, reflecting, and absorbing sunlight. Aerosols are also essential for cloud formation in the troposphere: They act as condensation nuclei which even in the presence of low levels of water vapor do enable droplets to form.

The size and concentration of aerosol particles is also of great importance for the number of cloud drops, which in turn influences the reflection characteristics of clouds.

Hence, aerosol particles tend to have a cooling influence on the atmosphere. However, the precise processes and feedback mechanisms have not yet been fully understood, so that the interaction between aerosol particles, their suitability as cloud condensation nuclei, and the sunlight reflected off the earth's surface represented one of the greatest uncertainties in the calculation of climatic activity.

The Muchachas project looked at organic aerosols, which constitute the largest proportion of chemical airborne particles. Organic aerosols are generated above forests, for example, and they are visible in the form of a blue mist in certain places such as the Great Smoky Mountains, the Blue Ridge Mountains, and the Blue Mountains.

In densely populated areas however, anthropogenically generated and released hydrocarbons play an important role as precursor of the development of secondary organic aerosols.

The experiments showed that the mass and composition of organic aerosols are significantly influenced by OH radicals. OH radicals are the most important oxidants in the atmosphere and make an important contribution to keeping air clean.

Researchers from Pittsburgh (USA), Juelich, Karlsruhe, and Mainz (Germany), Gothenburg (Sweden), Copenhagen (Denkmark), and Villigen (Switzerland) analyzed results in four different, large-volume atmospheric simulation chambers and found that the oxidation process called chemical aging has a significant impact and influence on the characteristics and concentration of organic aerosols over their entire life cycle.

"New climate models will have to take these findings into account," says Professor Dr. Thorsten Hoffmann of the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz (JGU) in Germany.

The Mainz researchers contributed primarily to the development of analytical techniques for studying the chemical composition of the aerosol particles in the Muchachas project.

Thanks to their development of so-called 'soft ionization' techniques and the corresponding mass spectrometers, Hoffmann's work group was able to track the concentration of individual molecule species in the atmospheric simulation chamber and thus observe the chemical aging of the atmospheric aerosols at the molecular level.

It was clearly demonstrated that oxidation occurred in the gaseous phase and not in the particle phase. "Now the goal is to integrate these underlying reactions in models of regional and global atmospheric chemistry and so reduce the discrepancy between the expected and the actually observed concentrations of organic aerosol particles," explains Hoffmann.

.


Related Links
Johannes Gutenberg-Universitat Mainz
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
High-Flying NASA Aircraft Helps Develop New Science Instruments
Greenbelt, MD (SPX) Sep 19, 2012
Over the next few weeks, an ER-2 high altitude research aircraft operating out of NASA's Wallops Flight Facility in Wallops Island, Va., will take part in the development of two future satellite instruments. The aircraft will fly test models of these instruments at altitudes greater than 60,000 feet to gather information researchers can use to develop ways to handle data future spaceborne ... read more


BLUE SKY
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

BLUE SKY
First Scoopful A Success

Checking a Bright Object on the Ground

China to collect samples from Mars by 2030: Xinhua

Mars rover finds 'bright object'

BLUE SKY
Dead stars could be cosmic 'GPS'

Dead stars could be the future of spacecraft navigation

Interstellar Travelers of the Future May be Helped by MU Physicist's Calculations

Singer Sarah Brightman to become space tourist

BLUE SKY
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

BLUE SKY
NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

NASA Celebrates Milestone Liftoff

45th Space Wing Supports First SpaceX Launch for NASA's Commercial Resupply Services

BLUE SKY
SpaceX capsule links up with space station: NASA

Assembled and poised for launch: Soyuz is ready with its two Galileo navigation satellites

SpaceX On Course For Crew Resupply Cargo Delivery To Space Station

SpaceX craft on way to ISS in first supply run

BLUE SKY
Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

The Magnetic Wakes of Pulsar Planets

BLUE SKY
Court delays Australian miner's Malaysia plant

Making computer data storage cheaper and easier

Architect shares simple green architecture improvements for homes and offices

An operating system in the cloud




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement