Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
IceCube provides proof of neutrinos from the cosmos
by Staff Writers
Mainz, Germany (SPX) Nov 26, 2013


View over the ice at the geographic South Pole to the above-ground measuring station for the IceCube experiment. The data from the photo sensors embedded in the ice are extracted and analyzed in computer farms. The picture comes from the dusk phase during the transition from the Antarctic winter (sun below the horizon) to the Antarctic summer (sun above the horizon). Image courtesy Sven Lindstrom, IceCube/NSF.

The IceCube Neutrino Observatory at the South Pole was the first to discover ultrahigh-energy neutrinos which most likely were the result of cosmic acceleration in outer space. "After more than a decade of intense searching, we can now announce that we have found neutrinos that were very probably generated in the vast expanses of outer space", reported Professor Lutz Kopke of Johannes Gutenberg University Mainz (JGU).

Neutrinos are electrically neutral particles with tiny mass. High-energy neutrinos may be generated in the proximity of black holes and are subsequently accelerated to acquire their extraordinary energies. They can then travel through space almost completely unhindered. On the downside, they are very difficult to detect.

The IceCube experiment has now found 28 neutrinos with energy greater than 50 tera-electron volts (TeV) all of which landed in the Antarctic ice between May 2010 and May 2012.

"This discovery was one of the key objectives of the IceCube experiment. It is fantastic that we have now reached this milestone, and in a way it is a relief as well," said Kopke, who has been searching for astrophysical neutrinos for more than 13 years and served as an internal reviewer as the final analysis was scrutinized.

The IceCube Neutrino Observatory is composed of 5,160 optical sensors placed in the Antarctic ice. Together they cover one cubic kilometer of clear South Polar ice. The high-precision optical sensors can detect weak flashes of blue light, also known as Cherenkov radiation, which is generated if neutrinos react near a detector and produce charged particles.

The detector was completed in late 2010 and provides data around the clock. It is currently the largest facility designed to search for neutrinos from outer space.

Even though a few neutrinos were discovered in 1987 after the explosion of a supernova in the Large Magellanic Cloud, their energy was about a million times less than the particles that were just?discovered.

"Some of the neutrinos we have now detected have a thousand times more energy than neutrinos created in particle accelerators on earth," explained Kopke. "Only a third of the 28 high-energy neutrinos could have been generated by cosmic radiation in the Earth's atmosphere."

Unlike light, neutrinos can penetrate space dust unhindered and can even penetrate our planet Earth. In doing so, neutrinos provide information about their far-away sources. The highest energy neutrinos can be detected with IceCube, regardless of the direction they came from.

"Over the next ten years we will continue to gather data which will tell us more about the origin of cosmic radiation and the unique properties of the neutrinos," said Kopke.

Billions of neutrinos penetrate every square centimeter of the Earth. Most are generated in the sun or in the Earth's atmosphere, which is constantly being bombarded with cosmic radiation. Neutrinos from further afield inside or outside of our galaxy are much rarer.

The existence of such neutrinos and the process that leads to their creation in the proximity of supernovas, black holes, pulsars, active galaxies, or other extreme extra-galactic phenomena have been discussed in many scientific papers. The IceCube Observatory was specifically developed to examine the frequency and type of high-energy neutrinos as well as to gain an understanding of their origins.

The findings with a significance greater than four standard deviations now published in Science illustrate that the neutrinos observed have properties that clearly indicate an origin in cosmic accelerators.

"The decisive analysis was carried out by a group of postdoctoral researchers and doctoral candidates at the University of Wisconsin in Madison, Wisconsin, USA, two of whom were German. Work is now being done to improve the precision of the observations and to understand what the signal means and where it comes from," explained Kopke.

The IceCube Neutrino Observatory at the geographic South Pole was completed in December 2010 after seven years of construction, on time and within budget. The American National Science Foundation (NSF) financed the instrumentation and the German Federal Ministry of Education and Research (BMBF) provided sizable funding for the experiment and the scientific personnel needed to conduct it.

The project includes 250 physicists from the US, Germany, Sweden, Belgium, Switzerland, Japan, Canada, New Zealand, Australia, the United Kingdom, and Korea. Professor Lutz Kopke's work group at Mainz University is part of the "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) Cluster of Excellence.

.


Related Links
Johannes Gutenberg University Mainz
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
IceCube pushes neutrinos to the forefront of astronomy
Madison WI (SPX) Nov 25, 2013
The IceCube Neutrino Observatory, a particle detector buried in the Antarctic ice, is a demonstration of the power of the human passion for discovery, where scientific ingenuity meets technological innovation. Today, nearly 25 years after the pioneering idea of detecting neutrinos in ice, the IceCube Collaboration announces the observation of 28 very high-energy particle events that constitute t ... read more


TIME AND SPACE
We're Going to the Moon!

NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

Rediscovered Apollo data gives first measure of how fast Moon dust piles up

TIME AND SPACE
Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

Rover Team Working to Diagnose Electrical Issue

TIME AND SPACE
International Space Station to enjoy Thanksgiving dinner

NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

Success of 'New Space' era hinges on public's interest

TIME AND SPACE
"Gravity" director wants China to take him into space

Teal Identifies Over 3,000 Payloads For Launch By 2032

China shows off moon rover model before space launch

China providing space training

TIME AND SPACE
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

TIME AND SPACE
Stepping up Vega launcher production

Czech and XCOR Sign Payload Integrator Agreement for Suborbital Flights

Spaceflight Deploys Planet Labs' Dove 3 Spacecraft from the Dnepr

Arianespace orders ten new Vega launchers from ELV

TIME AND SPACE
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

TIME AND SPACE
What might recyclable satellites look like?

Overcoming Brittleness: New Insights into Bulk Metallic Glass

SlipChip Counts Molecules with Chemistry and a Cell Phone

NASA Instrument Determines Hazards of Deep-Space Radiation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement