Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
IceCube Neutrino Observatory explores origin of cosmic rays
by Staff Writers
Madison WI (SPX) Apr 23, 2012


Improved theoretical understanding and more data from the compete IceCube detector will help scientists better understand the mystery of cosmic ray production.

Although cosmic rays were discovered 100 years ago, their origin remains one of the most enduring mysteries in physics. Now, the IceCube Neutrino Observatory, a massive detector in Antarctica, is honing in on how the highest energy cosmic rays are produced.

"Although we have not discovered where cosmic rays come from, we have taken a major step towards ruling out one of the leading predictions," said IceCube principal investigator and University of Wisconsin-Madison physics professor Francis Halzen.

Cosmic rays are electrically charged particles, such as protons, that strike Earth from all directions, with energies up to one hundred million times higher than those created in man-made accelerators.

The intense conditions needed to generate such energetic particles have focused physicists' interest on two potential sources: the massive black holes at the centers of active galaxies, and the exploding fireballs observed by astronomers as gamma ray bursts (GRBs).

IceCube is using neutrinos, which are believed to accompany cosmic ray production, to explore these theories. In a paper published in the April 19 issue of the journal Nature, the IceCube collaboration describes a search for neutrinos emitted from 300 gamma ray bursts observed, most recently in coincidence with the SWIFT and Fermi satellites, between May 2008 and April 2010.

Surprisingly, they found none - a result that contradicts 15 years of predictions and challenges one of the two leading theories for the origin of the highest energy cosmic rays.

"The result of this neutrino search is significant because for the first time we have an instrument with sufficient sensitivity to open a new window on cosmic ray production and the interior processes of GRBs," said IceCube spokesperson and University of Maryland physics professor Greg Sullivan.

"The unexpected absence of neutrinos from GRBs has forced a re-evaluation of the theory for production of cosmic rays and neutrinos in a GRB fireball and possibly the theory that high energy cosmic rays are generated in fireballs."

IceCube is a high energy neutrino telescope at the geographical South Pole in Antarctica, operated by a collaboration of 250 physicists and engineers from the USA, Germany, Sweden, Belgium, Switzerland, Japan, Canada, New Zealand, Australia and Barbados.

The IceCube Neutrino Observatory was built under a National Science Foundation (NSF) Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The NSF Office of Polar Programs continues to support the project with a Maintenance and Operations grant. Construction was finished in December 2010.

IceCube observes neutrinos by detecting the faint blue light produced in neutrino interactions in ice. Neutrinos are of a ghostly nature; they can easily travel through people, walls, or the planet Earth.

To compensate for the antisocial nature of neutrinos and detect their rare interactions, IceCube is built on an enormous scale. One cubic kilometer of glacial ice, enough to fit the great pyramid of Giza 400 times, is instrumented with 5,160 optical sensors embedded up to 2.5 kilometers deep in the ice.

GRBs, the universe's most powerful explosions, are usually first observed by satellites using X-rays and/or gamma rays. GRBs are seen about once per day, and are so bright that they can be seen from half way across the visible Universe. The explosions usually last only a few seconds, and during this brief time they can outshine everything else in the universe.

Improved theoretical understanding and more data from the compete IceCube detector will help scientists better understand the mystery of cosmic ray production. IceCube is currently collecting more data with the finalized, better calibrated, and better understood detector.

.


Related Links
IceCube
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Where do the highest-energy cosmic rays come from?
Berkeley CA (SPX) Apr 20, 2012
The IceCube neutrino telescope encompasses a cubic kilometer of clear Antarctic ice under the South Pole, a volume seeded with an array of 5,160 sensitive digital optical modules (DOMs) that precisely track the direction and energy of speeding muons, massive cousins of the electron, which are created when neutrinos collide with atoms in the ice. The IceCube Collaboration recently announced ... read more


STELLAR CHEMISTRY
Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

STELLAR CHEMISTRY
Opportunity Benefits From Brighter Skies and Small Dust Cleaning of Solar Panels

Human health on Mars mission discussed

Bringing Mars Back to Earth

Asteroid Craters On Earth Give Clues In Search For Life On Mars

STELLAR CHEMISTRY
Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

NASA Announces 16th Undersea Exploration Mission Dates and Crew

Dwindling US Space Budget Worries Scientist

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Russian cargo ship docks at International Space Station

Russian Cargo Craft Launches to Station

Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

STELLAR CHEMISTRY
Aerojet Delivers 50th Flight-Ready Solid Rocket Booster to ULA

SpaceX said eyeing Texas launch site

Lockheed Martin Names New Leader for Commercial Launch Services Business

A double arrival for Arianespace's next dual-payload Ariane 5 mission

STELLAR CHEMISTRY
Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

STELLAR CHEMISTRY
New Research Could Mean Cellphones That Can See Through Walls

SciTechTalk: Apple rumors du jour

US judge allows tech 'poaching' suit to proceed

Hollywood studios lose landmark download case




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement