Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
How to look young when you're not - Stars reveal the secret of aging well
by Staff Writers
Paris (ESA) Dec 24, 2012


The globular cluster NGC 6388, observed by Hubble.

Some people are in great shape at the age of 90, while others are decrepit before they're 50. We know that how fast people age is only loosely linked to how old they actually are - and may have more to do with their lifestyle. A new study with the NASA/ESA Hubble Space Telescope reveals that the same is true of star clusters.

Globular clusters are spherical collections of stars, tightly bound to each other by their mutual gravity. Relics of the early years of the Universe, with ages of typically 12-13 billion years (the Big Bang took place 13.7 billion years ago), there are roughly 150 globular clusters in the Milky Way and they contain many of our galaxy's oldest stars.

But while the stars are old and the clusters formed in the distant past, astronomers using the NASA/ESA Hubble Space Telescope and the MPG/ESO 2.2-metre telescope at the ESO La Silla Observatory have found that some of these clusters are still young at heart. The research is presented in the 20 December 2012 issue of the journal Nature.

"Although these clusters all formed billions of years ago," says Francesco Ferraro (University of Bologna), the leader of the team that made the discovery, "we wondered whether some might be aging faster or slower than others. By studying the distribution of a type of blue star that exists in the clusters, we found that some clusters had indeed evolved much faster over their lifetimes, and we developed a way to measure the rate of aging."

Star clusters form in a short period of time, meaning that all the stars within them tend to have roughly the same age. Because bright, high-mass stars burn up their fuel quite quickly, and globular clusters are very old, there should only be low-mass stars still shining within them.

This, however, turns out not to be the case: in certain circumstances, stars can be given a new burst of life, receiving extra fuel that bulks them up and substantially brightens them. This can happen if one star pulls matter off a neighbour, or if they collide. The re-invigorated stars are called blue stragglers, and their high mass and brightness are properties that lie at the heart of this study.

Heavier stars sink towards the centre of a cluster as the cluster ages, in a process similar to sedimentation. Blue stragglers' high masses mean they are strongly affected by this process, while their brightness makes them relatively easy to observe.

To better understand cluster aging, the team mapped the location of blue straggler stars in 21 globular clusters, as seen in images from Hubble and the MPG/ESO 2.2-metre telescope at the ESO La Silla Observatory, among other observatories. Hubble provided high resolution imagery of the crowded centres of 20 of the clusters, while the ground-based imagery gave a wider view of their less busy outer regions.

Analysing the observational data, the team found that a few clusters appeared young, with blue straggler stars distributed throughout, while a larger group appeared old, with the blue stragglers clumped in the centre. A third group was in the process of aging, with the stars closest to the core migrating inwards first, then stars ever further out progressively sinking towards the centre.

"Since these clusters all formed at roughly the same time, this reveals big differences in the speed of evolution from cluster to cluster," said Barbara Lanzoni (University of Bologna, Italy), a co-author of the study. "In the case of fast-aging clusters, we think that the sedimentation process can be complete within a few hundred million years, while for the slowest it would take several times the current age of the Universe."

As a cluster's heaviest stars sink towards the centre, the cluster eventually experiences a phenomenon called core collapse, where the centre of the cluster bunches together extremely densely.

The processes leading towards core collapse are quite well understood, and revolve around the number, density and speed of movement of the stars. However, the rate at which they happened was not known until now. This study provides the first empirical way of investigating these different rates of aging.

The international team of astronomers in this study consists of F.R. Ferraro (University of Bologna, Italy), B. Lanzoni (University of Bologna, Italy), E. Dalessandro (University of Bologna, Italy), G. Beccari (European Southern Observatory), M. Pasquato (University of Bologna, Italy), P. Miocchi (University of Bologna, Italy), R.T. Rood (University of Virginia, USA), S. Sigurdsson (Pennsylvania State University, USA),, A. Sills (McMaster University, Canada), E. Vesperini (Indiana University, USA), M. Mapelli (INAF/Padua Observatory, Italy), R. Contreras (University of Bologna, Italy), N. Sanna (University of Bologna, Italy), A. Mucciarelli (University of Bologna, Italy)

.


Related Links
Cosmic-Lab project
Hubble Space Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Southampton researchers find a glitch' in pulsar 'glitch' theory
Southampton UK (SPX) Dec 20, 2012
Researchers from the University of Southampton have called in to question a 40 year-old theory explaining the periodic speeding up or 'glitching' of pulsars. A pulsar is a highly magnetised rotating neutron star formed from the remains of a supernova. It emits a rotating beam of electromagnetic radiation, which can be detected by powerful telescopes when it sweeps past the Earth, rather li ... read more


STELLAR CHEMISTRY
GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

STELLAR CHEMISTRY
Clays on Mars: More Plentiful Than Expected

Opportunity For Some Shoulder Workout At Copper Cliff

Enabling ChemCam to Measure Key Isotopic Ratios on Mars and Other Planets

Curiosity Rover Explores 'Yellowknife Bay'

STELLAR CHEMISTRY
NASA Puts Orion Backup Parachutes to the Test

White House to honor scientists, inventors

TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

STELLAR CHEMISTRY
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

STELLAR CHEMISTRY
Expedition 34 Spends Christmas in Space

Three astronauts blast off for ISS in Russian craft

Soyuz rocket brings trio to space station

ISS Orbit Raised Ahead of Crew Arrival

STELLAR CHEMISTRY
Ariane 5 ECA orbits Skynet 5D and Mexsat Bicentenario satellites

Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

ISRO planning 10 space missions in 2013

STELLAR CHEMISTRY
Closest sun-like star may have planets

Nearby star is good candidate for Earth-like planets

Venus transit and lunar mirror could help astronomers find worlds around other stars

Astronomers discover and 'weigh' infant solar system

STELLAR CHEMISTRY
Berkeley Lab Scientists Developing Quick Way to ID People Exposed to Ionizing Radiation

All Systems Go for Highest Altitude Supercomputer

Space Fence program moving forward

Aldrich Materials Science discovers liquid-free preparation of metal organic frameworks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement