Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Getting The Wrinkles Out Transparent Film Development
by Staff Writers
Washington DC (SPX) Apr 06, 2010


This atomic-force microscopy image shows wrinkling in a single-wall carbon nanotube membrane; the inset shows an optical reflection micrograph of the membrane without any strain. The random arrangement of the nanotubes shown in the inset creates conductivity, but wrinkling can disrupt that. Each image is 40 micrometers in width. Credit: NIST

A closer look at a promising nanotube coating that might one day improve solar cells has turned up a few unexpected wrinkles, according to new research* conducted at the National Institute of Standards and Technology (NIST) and North Dakota State University (NDSU)-research that also may help scientists iron out a solution.

The scientists have found that coatings made of single-walled carbon nanotubes (SWCNTs) are not quite as deformable as hoped, implying that they are not an easy answer to problems that other materials present. Though films made of nanotubes possess many desirable properties, the team's findings reveal some issues that might need to be addressed before the full potential of these coatings is realized.

"The irony of these nanotube coatings is that they can change when they bend," says Erik Hobbie, now the director of the Materials and Nanotechnology program at NDSU. "Under modest strains, these films can develop irreversible changes in nanotube arrangement that reduce their conductivity. Our work is the first to suggest this, and it opens up new approaches to engineering the films in ways that minimize these effects."

High on the wish list of the solar power industry is a cheap, flexible, transparent coating that can conduct electricity. If this combination of properties can somehow be realized in a single material, solar cells might become far less expensive, and manufacturers might be able to put them in unexpected places-such as articles of clothing. Transparent conductive coatings can be made of indium-tin oxide, but their rigidity and high cost make them less practical for widespread use.

Carbon nanotubes are one possible solution. Nanotubes, which resemble microscopic rolls of chicken wire, are inexpensive, easy to produce, and can be formed en masse into transparent conductive coatings whose weblike inner structure makes them not only strong but deformable, like paper or fabric. However, the team's research found that some kinds of stretching cause microscopic 'wrinkles' in the coating that disrupt the random arrangement of the nanotubes, which is what makes the coating conduct electricity.

"You want the nanotubes to stay randomly arranged," Hobbie says. "But when a nanotube coating wrinkles, it can lose the connected network that gives it conductivity. Instead, the nanotubes bundle irreversibly into ropelike formations."

Hobbie says the study suggests a few ways to address the problem, however. The films might be kept thin enough so the wrinkling might be avoided in the first place, or designers could engineer a second interpenetrating polymer network that would support the nanotube network, to keep it from changing too much in response to stress. "These approaches might allow us to make coatings of nanotubes that could withstand large strains while retaining the traits we want," Hobbie says.

E. K. Hobbie, D. O. Simien, J. A. Fagan, J. Y. Huh, J. Y.Chung, S. D. Hudson, J. Obrzut, J. F. Douglas, and C. M. Stafford. Wrinkling and Strain Softening in Single-Wall Carbon Nanotube Membranes. Physical Review Letters, March 26, 2010, 104, 125505.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Russian Silicon Valley To Be Profitable Within Seven Year
Khanty-Mansiisk, Russia (RIA Novosti) Mar 25, 2010
Russian billionaire oligarch Viktor Vekselberg in charge of coordinating the project of Skolkovo's high-tech research and production hub believes the new research center will become self-sufficient in 5-7 years. "I believe it's extremely important this project starts on the right track from the very beginning and breaks even on its own. I hope this task will take us 5-7 years," he said on ... read more


TECH SPACE
ESA plans its first moon lander

A Precise Voyage To The Lunar South Pole

A Piece Of The Moon In Oberhausen

The Mystery Of Moonwater

TECH SPACE
Opportunity For A Twin Crater Drive By

Third Phoenix Listening Period Begins Monday

Opportunity At Concepcion Crater

A Sleeping Spirit May Yet Awaken In The Spring

TECH SPACE
BuyerZone Helps Adventurers Travel To Space

IV Water Filter May Open Medical Options For Astronauts

What Caused The Ares I-X Parachute To Fail

US makes light of Venezuela-Russia space bid

TECH SPACE
China, Bolivia to build communications satellite

China To Complete Wenchang Space Center By 2015

China To Conduct Maiden Space Docking In 2011

China chooses first women astronauts

TECH SPACE
NASA extends space contract with Russia on ISS

New Expedition 23 Crew Members Welcomed Aboard Station

Astronauts dock at International Space Station

SpaceX Activates ISS Comms System For Dragon Spacecraft

TECH SPACE
Ariane 5's Launch With ASTRA 3B and COMSATBw-2 Set For April 9

Brazil To Develop Carrier Rocket By 2014

Bolivia, China Sign Satellite Launching Agreement

CryoSat-2 Installed In Launch Silo

TECH SPACE
Newly Discovered Planet Could Hold Water

CoRoT-9b - A Temperate Exoplanet

'Cool Jupiter' widens search for exoplanets

How To Hunt For Exoplanets

TECH SPACE
Getting The Wrinkles Out Transparent Film Development

Eye-tracking tools that boost reality

Amid iPad frenzy, HP promotes its tablet computer

Assembly begins on NASA's Juno spacecraft




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement