Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Force is the Key to Granular State-Shifting
by Staff Writers
Raleigh NC (SPX) Feb 28, 2013


Two-dimensional granular material composed of photo-elastic disks. Regions of high stress appear bright. Researchers can determine contact forces by examining brightness patterns.

Ever wonder why sand can both run through an hourglass like a liquid and be solid enough to support buildings? It's because granular materials - like sand or dirt - can change their behavior, or state. Researchers from North Carolina State University have found that the forces individual grains exert on one another are what most affect that transition.

Physicists have explored the changing behavior of granular materials by comparing it to what happens in thermodynamic systems. In a thermodynamic system, you can change the state of a material - like water - from a liquid to a gas by adding energy (heat) to the system.

One of the most fundamental and important observations about temperature, however, is that it has the ability to equilibrate: a hot cup of tea eventually cools to match the temperature of the room.

Physicists thought they could use thermodynamics' underlying ideas to explain the changes in granular materials, but didn't know whether granular materials had properties which might equilibrate in a similar way.

In other words, instead of temperature being the change agent in a granular system, it might be a property related to the amount of free space, or the forces on the particles. But no one had really tested which of the two might exhibit this property of equilibration.

NC State physicist Karen Daniels and former graduate student James Puckett devised a way to do just that. Puckett used two different types of plastic "granules" with different properties that floated atop a layer of air on a small table.

Puckett and Daniels wanted to see what would bring the two types of particles into equilibrium with one another. In order to make their measurements, they used a plastic material that indicated a change in force by a change in brightness.

First, they measured compactivity, which describes the number of ways particles can arrange themselves inside a given space, or volume, by reducing the physical space around the granules, but the two types of particles failed to achieve equilibrium. When they measured the ways that the forces between the particles could rearrange, they saw the equilibrium they were looking for.

Their findings appear in Physical Review Letters.

"Physicists often have ideas that are theoretically elegant, such as the idea that there might be new temperature-like variables to be discovered, and then it's exciting to go into the lab and see how well these ideas work in practice," says Daniels.

"In this case, we found it is possible to take the temperature of a granular system and find out more about what makes it change its state. The 'thermometer' for this temperature is actually the particles themselves."

"Equilibrating temperaturelike variables in jammed granular subsystems" - Authors: James Puckett, Karen Daniels, North Carolina State University; Published: Physical Review Letters

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Tungstenite triangles emit light
London, UK (SPX) Feb 28, 2013
Researchers in the US have succeeded in growing single atomic layers of the naturally occurring mineral tungstenite for the first time. The sheets appear to have unusual photoluminescence properties that might be exploited in optics devices like lasers and light-emitting diodes. 2D materials have dramatically different electronic and mechanical properties from their 3D counterparts and so ... read more


TECH SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

TECH SPACE
Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

TECH SPACE
Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

TECH SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

TECH SPACE
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

TECH SPACE
'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

TECH SPACE
Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

TECH SPACE
Ancient Egyptian pigment points to new security ink technology

Laser mastery narrows down sources of superconductivity

In probing mysteries of glass, researchers find a key to toughness

Glasses.com turns heads with 3-D iPad app




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement