Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Fluids in Space, Shaken Not Stirred
by Jessica Nimon for ISS Science News
Houston TX (SPX) Feb 25, 2013


Astronaut Frank DeWinne works with the Selectable Optical Diagnostics Instrument Influence of Vibration on Diffusion in Liquids (SODI-IVIDIL) hardware in the Microgravity Science Glovebox (MSG) aboard the International Space Station. (NASA)

James Bond might be the first to tell you that a well-shaken martini is a vast improvement over one that has settled and separated. A good mixture depends on understanding exactly how much to agitate a drink, as well as how quickly the ingredients will settle and if there are other mediating factors, such as temperature. If Bond really wanted to understand the science of his spirits, he could follow the examples of researchers who sent fluid mixture experiments to the International Space Station.

The Selectable Optical Diagnostics Instrument-Influence of Vibrations on Diffusion of Liquids, or SODI-IVIDIL, investigation addressed the question of fluid physics fundamentals while looking at how heat and particles move through liquids in microgravity. The scientists who conducted the space station investigation from October 2009 to January 2010 were not interested in cocktails, however, but instead wanted to verify current math models to predict liquid mixture behavior.

Information from this study adds to the collective knowledge of fluid physics, advancing that area of science.

"Any research initiative is a small step forward, a venture into a land of unknown, toward a better understanding of nature and the world we are living in," said Valentina Shevtsova, Ph.D., principal investigator for SODI-IVIDIL at the Microgravity Research Center, ULB, Belgium. "Before this venture is realized, much work is needed to increase the chance of success. And this is where the pre-experimental computer and theoretical studies rule."

Researchers knew that studying reduced convection buoyancy -- the transfer of heat by movement -- aboard the space station could reveal fluid mixture behaviors hidden by gravity in experiments on the ground. Still, they needed to check if there were any side effects from the minor on-orbit tremors, known as g-jitter, such as crew movements or mechanical vibrations that could distort data.

To perform this series of experiments, researchers used the SODI optical instrument, which also helps with other station studies, such as SODI-Colloid. The European Space Agency, or ESA, built the SODI instrument for use aboard the station for fluids research in the space environment. The crew put the IVIDIL sample cells into SODI for processing and observation. The liquid binary solution samples, which are essentially fluids made up of a two-part mixture -- similar to if Bond had vodka and water instead of his trademark martini -- were then tested for their response to various vibrations.

After 55 repetitions of the experiment, researchers found that only major space station vibrations caused impacts, such as orbital debris avoidance maneuvers or dockings and undockings of spacecraft. The more common minor movements that are part of daily life aboard station did not influence the samples.

"The SODI-IVIDIL experiment clearly showed that onboard jitters do not affect fluid investigations of this type in microgravity, paving the way for future studies with more complex samples," said Shevtsova.

This is the first successful station study to gauge the impact of on-orbit g-jitter, providing benchmark values for future fluid diffusion experiments. These results provide proven numbers for equations to predict movement of liquids, which were not possible to obtain on Earth, due to gravity.

Now that scientists know their numerical models are reliable, they can use them with confidence as a reference point as they move forward with additional research in the area of fluid physics and in physical and life science studies aboard station. This is good news for future station investigations, such as Diffusion Coefficients in MIXtures, or DCMIX, and Vibrational Phenomena In Liquids, or VIPIL, as well as applications for space equipment.

"The studied phenomenon in SODI-IVIDIL allows for the control of fluids in microgravity important for material processing, space-enabling operations and even life support," said Shevtsova. "European scientists expect to obtain bullet-proof benchmark results from future space station studies with three component mixtures, such as DCMIX, to validate ground experimental techniques."

So what does this study mean for those of us on Earth, since we are not likely worried about Bond's quest for the perfect martini in an orbital lounge? These results actually have direct applications to petroleum research.

Data from these space studies may help the oil industry generate formulas to predict correct measurements for the liquid to gas ratio in potential wells. This information aids geophysics and mineralogy experts as they evaluate the capacity of reservoirs -- collections of natural resources that lay hidden in the ground. Using these formulas could prevent costly mistakes during exploration, leading to more accurate and affordable speculation.

"The convection flows created by vibrations in microgravity are similar to the convection created on the ground by buoyancy," said Shevtsova.

While SODI-IVIDIL examined a binary solution, it paved the way for more complex mixture research on orbit by showing that g-jitter would not complicate the results. For instance, DCMIX will look at a three part liquid and other, more complex solutions will follow.

DCMIX is scheduled to launch aboard a Russian Progress spacecraft to the space station in the summer of 2013. Since oil is a multicomponent mixture, as this microgravity fluid physics research continues to evolve, so also will the advances made in exploration in space and on Earth.

.


Related Links
ISS Program Science Office
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Lessons from nature could lead to the creation of new materials
San Diego CA (SPX) Feb 21, 2013
In a sweeping review of the field of bio-inspired engineering and biomimicry in the Feb. 15 issue of the journal Science, two engineers at the University of California, San Diego, identify three characteristics of biological materials that they believe engineers would do well to emulate in man-made materials: light weight, toughness and strength. Joanna McKittrick and Marc Meyers, from the ... read more


TECH SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

TECH SPACE
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

TECH SPACE
Choreographed to Perfection

ATK Launch Abort Motor For First Orion Test Vehicle

Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

TECH SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

TECH SPACE
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

TECH SPACE
SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

Countdown begins for Indo-French satellite launch

TECH SPACE
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

TECH SPACE
Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup

Sustainable new catalysts fueled by a single proton




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement