Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Finding the roots and early branches of the tree of life
by Staff Writers
London, UK (SPX) Apr 26, 2012


With the ancestral form uncovered, and evolutionary drivers pinned to branching points in the tree, the researchers now want to make the study more mathematically formal and further analyze the early evolution of metabolism.

A study published in PLoS Computational Biology maps the development of life-sustaining chemistry to the history of early life. Researchers Rogier Braakman and Eric Smith of the Santa Fe Institute traced the six methods of carbon fixation seen in modern life back to a single ancestral form.

Carbon fixation - life's mechanism for making carbon dioxide biologically useful - forms the biggest bridge between Earth's non-living chemistry and its biosphere.

All organisms that fix carbon do so in one of six ways. These six mechanisms have overlaps, but it was previously unclear which of the six types came first, and how their development interweaved with environmental and biological changes.

The authors used a method that creates "trees" of evolutionary relatedness based on genetic sequences and metabolic traits. From this, they were able to reconstruct the complete early evolutionary history of biological carbon-fixation, relating all ways in which life today performs this function.

The earliest form of carbon fixation identified achieved a special kind of built-in robustness - not seen in modern cells - by layering multiple carbon-fixing mechanisms.

This redundancy allowed early life to compensate for a lack of refined control over its internal chemistry, and formed a template for the later splits that created the earliest major branches in the tree of life.

For example, the first major life-form split came with the earliest appearance of oxygen on Earth, causing the ancestors of blue-green algae and most other bacteria to separate from the branch that includes Archaea, which are outside of bacteria the other major early group of single-celled microorganisms.

"It seems likely that the earliest cells were rickety assemblies whose parts were constantly malfunctioning and breaking down," explains Smith. "How can any metabolism be sustained with such shaky support? The key is concurrent and constant redundancy."

Once early cells had more refined enzymes and membranes, giving greater control over metabolic chemistry, minimization of energy (ATP) used to create biomass, changes in oxygen levels and alkalinity directed life's unfolding.

In other words, the environment drove major divergences in predictable ways, in contrast to the common belief that chance dominated evolutionary innovation - and that rewinding and replaying the evolutionary tape would lead to an irreconcilably different tree of life.

"Mapping cell function onto genetic history gives us a clear picture of the physiology that led to the major foundational divergences of evolution," explains Braakman. "This highlights the central role of basic chemistry and physics in driving early evolution."

With the ancestral form uncovered, and evolutionary drivers pinned to branching points in the tree, the researchers now want to make the study more mathematically formal and further analyze the early evolution of metabolism.

Braakman R, Smith E (2012) The Emergence and Early Evolution of Biological Carbon-Fixation. PLoS Comput Biol 8(4): e1002455. doi:10.1371/journal.pcbi.1002455

.


Related Links
Public Library of Science
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Diversity aided mammals' survival over deep time
Nashville, TN (SPX) Apr 25, 2012
When it comes to adapting to climate change, diversity is the mammal's best defense. That is one of the conclusions of the first study of how mammals in North America adapted to climate change in "deep time" - a period of 56 million years beginning with the Eocene and ending 12,000 years ago with the terminal Pleistocene extinction when mammoths, saber-toothed tigers, giant sloths and most of th ... read more


EARLY EARTH
NASA's Lunar Reconnaissance Orbiter Brings 'Earthrise' to Everyone

Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

EARLY EARTH
Lava flows carved Mars valleys: study

Mars Astronauts Could Risk DNA Damage

Asteroid sites hint at life on Mars

WSU astrobiologist proposes fleet of probes to seek life on Mars

EARLY EARTH
Space -- the next frontier for Hillary Clinton?

Company to Create 'Gas Stations' in Space

Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

EARLY EARTH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

EARLY EARTH
Russian cargo ship docks at International Space Station

Russian Cargo Craft Launches to Station

Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

EARLY EARTH
Indian rocket being fuelled for Risat-1 launch

Assembly begins for the third Ariane 5 to be launched in 2012

ILS Proton Successfully Launches Y1B Satellite For Yahsat

SpaceX aims for May 7 launch to ISS

EARLY EARTH
Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

EARLY EARTH
Google sells 3D modeling application SketchUp

The ultimate babysitter? iPads for infants stir debate

TED blends animation with education at new website

360-Degree MEADS Radar Begins Integration Testing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement