Subscribe free to our newsletters via your
. 24/7 Space News .




AEROSPACE
Faster Than The Speed Of Sound
by Staff Writers
Columbus OH (SPX) May 01, 2009


X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight. Credit: NASA Dryden Flight Research Center.

When a jet is flying faster than the speed of sound, one small mistake can tear it apart. And when the jet is so experimental that it must fly unmanned, only a computer control system can pilot it.

Ohio State University engineers have designed control system software that can do just that - by adapting to changing conditions during a flight.

Government agencies have been developing faster-than-sound vehicles for decades. The latest supersonic combustion ramjets - called scramjets - burn air for fuel, and could one day carry people to space or around the world in a matter of hours.

The recent success of NASA's X-43 hypersonic jet has spurred research into the control systems for these vehicles, said Lisa Fiorentini, doctoral student in electrical and computer engineering at Ohio State University.

She and associate professor Andrea Serrani are developing a new control system in collaboration with the U.S. Air Force Research Laboratory (ARFL) at Wright-Patterson Air Force Base in Ohio.

In the current issue of the Journal of Guidance, Control, and Dynamics, they report that their controller performed flawlessly in computer simulations of flight maneuvers.

The controller both guides the jet along its trajectory and keeps it stable during a flight, Fiorentini explained. Sensors measure factors such as altitude, velocity, and acceleration, and the controller calculates whether any adjustments need to be made to keep the jet stable and on course. Then actuators carry out the controller's commands - for instance, throttling up the engine if the jet needs to accelerate.

"Because these vehicles are unmanned right now, we have to prepare everything ahead of time - anticipate every possible in-flight event," she said.

"And the controller has to work really fast. At 10 times the speed of sound, if you lose just one second, the jet has gone far, far off course."

What sets the Ohio State control system apart, Serrani explained, is that it allows for flexibility: it adapts to changing conditions during a flight.

"The truly remarkable feature of our approach is that we consider a realistic, physics-based vehicle model within our stability analysis, using a highly sophisticated controller," he said.

Most other research teams build their controllers from very simplified computer models, Fiorentini added.

"Since we are working with Wright-Patterson, we have access to the most sophisticated model available for this aircraft," she said.

They are collaborating with Michael A. Bolender, an aerospace engineer, and David B. Doman, a senior aerospace engineer, both of ARFL, as well as Jack McNamara, assistant professor of aerospace engineering at Ohio State.

The Ohio State engineers derived equations that describe a scramjet's flight dynamics and behavior. Then, given the vehicle model by their partners at Wright-Paterson, they created a set of algorithms that could ultimately be built into a scramjet's on-board computer.

Today's experimental scramjets are not merely supersonic - meaning they fly faster than the speed of sound, or Mach 1 - but hypersonic, meaning they fly at Mach 5 or faster. The most recent X-43 flight in 2004 neared a speed of Mach 10 (Mach 9.8, or 7,546 miles per hour).

Scramjets are shaped to scoop oxygen from the atmosphere during flight in order to ignite the hydrogen fuel already on board. This eliminates the need for heavy external oxygen tanks, and enables scramjets to carry more cargo than a typical rocket.

NASA had explored scramjets as a successor to the Space Shuttle for trips to the International Space Station. The X-43 project closed in 2004, as the space agency shifted its priorities toward a return to the Moon.

But the technology is still under development in military and commercial sectors. Scramjets could deliver missiles to mobile targets; they could also carry people halfway around the world in less than an hour.

For this study, the engineers simulated two flight situations. In the first, simpler case, the scramjet had to climb from a level flight to 13,000 feet in a little less than six minutes. In a second, more complicated maneuver, it had to start at a few degrees off-kilter from a level flight, and then climb 25,000 feet in about four minutes.

In both simulations, researchers recorded the controller's tracking errors as the jet executed its maneuver. Then they compared the results to simulations using a controller they had developed previously - one that did not have adaptive capabilities built in.

For example, in the simpler maneuver, the largest altitude tracking error for the older, non-adaptive controller was just over 40 feet; the largest corresponding error for the new, adaptive controller was less than 2 feet - an improvement by a factor of 20.

For the more complex maneuver, the non-adaptive controller failed - the simulated jet spun out of control and crashed in less than four seconds. The new adaptive controller was able to guide the jet to its new altitude without incident.

The Ohio State and AFRL engineers are continuing to refine the controller. The next improvement will add some safety limits, Fiorentini said. Scramjets need to maintain the right amount of airflow to the engine, she explained, and if they rise too fast, the engine may stall in mid-air.

This work was funded by the ARFL and the U.S. Air Force Office of Scientific Research through the Ohio State University Collaborative Center of Control Science, and by the Michigan/AFRL Collaborative Center of Control Science.

.


Related Links
Ohio State University
Aerospace News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NUKEWARS
ICAO tells NKorea to retract aviation threat: ministry
Seoul (AFP) March 10, 2009
The UN body for aviation safety has urged North Korea to retract a threat to South Korean passenger aircraft, Seoul's foreign ministry said Tuesday. The International Civil Aviation Organisation (ICAO) "unanimously" decided Monday to send North Korea a letter calling on it to withdraw its March 5 announcement, the ministry said in a statement. The North last Thursday announced it "can no ... read more


NUKEWARS
Indian Lunar Orbiter Sends Back Images To Establish Water Presence On Moon

US scientists plan greenhouses on the Moon

NASA Twin Spacecraft May Reveal Secret Of Lunar Origin

Earthshine Reflects Earth's Oceans And Continents From Dark Side Of Moon

NUKEWARS
Spirit problems still baffle scientists

Spirit Resumes Driving While Analysis Of Problem Behaviors Continues

Early Martian Environment And Water Drive Search For Life Forms

Mars Science Laboratory Parachute Qualification Testing

NUKEWARS
NASA to study antifungal drugs in space

NASA to air astronaut induction ceremony

Bone-Density Monitor Would Let Astronauts Test While In Space

China expert recruitment project nets first batch: report

NUKEWARS
China Launches Yaogan VI Remote-Sensing Satellite

China Able To Send Man To Moon Around 2020

China To Launch 15 To 16 Satellites In 2009

Macao Donates 14 Million Yuan To Mainland Space Program

NUKEWARS
Happy US-Russian crew deny 'divorce in space'

NASA to unveil space station name on Colbert show

Expedition 18 Crew Set To Return Home

Crews Prepare For Expedition 18 Departure

NUKEWARS
Planck Mated With The Ariane 5 ECA Launcher

Base Considers Disassembling Historical Launch Complex

Continental Provides New Tires For Payload Transporter

NATO satellite launched on Russian-Ukrainian rocket

NUKEWARS
Some planets may fall into their stars

Super-Earth And An Ocean World

Mass Loss Leaves Close-In Exoplanets Exposed To The Core

Lightest Exoplanet Yet Discovered

NUKEWARS
Virtual mobility for disabled wins Second Life prize

New Book Highlights Success Stories In Satellite Systems

A Glimpse Of Future GMES Sentinel-1 Radar Images

Lockheed Martin Contract To Support Long-Range Surveillance Radars In The Amazon




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement