Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Exotic alloys for potential energy applications
by Staff Writers
Washington DC (SPX) Jul 02, 2013


File image.

The search for thermoelectrics, exotic materials that convert heat directly into electricity, has received a boost from researchers at the California Institute of Technology and the University of Tokyo, who have found the best way to identify them.

In the new open-access journal APL Materials, the team shows that a relatively simple technique called the "rigid band approximation" can predict a material's properties more accurately than a competing, more complicated method.

"The rigid band approach still supplies the simple, predictive engineering concepts we need for discovering fruitful thermoelectric material compositions," says G. Jeffrey Snyder, a Caltech faculty associate in materials science, who led the research.

Thermoelectrics have been used since the 1950s to power spacecraft by converting the heat from radioactive decay into electricity. Their unusual properties arise from complex interactions between the many electrons associated with the atoms in alloys of heavy metals such as lead, bismuth, tellurium and antimony.

With no moving parts, thermoelectric generators are quiet and extremely reliable, requiring minimal maintenance. However, the generators are relatively inefficient (typically less than 10 percent) and the materials needed to build them are expensive -- factors that have prevented their widespread use and limited thermoelectrics to niche applications such as spacecraft or wine refrigerators.

In recent years, however, the need for increased energy efficiency and non-carbon-based power generation has sparked renewed interest in thermoelectrics. With improvements, researchers believe the materials could generate cheap electricity from otherwise wasted heat produced by engines and factory furnaces.

"If we could double their efficiency, then thermoelectric modules incorporated into an automobile engine's exhaust system could generate enough power to replace the alternator, which would increase the car's gas mileage," said Snyder.

The challenge for scientists is to choose alloy compositions, crystal sizes and additives, (also called dopants), which would yield high thermoelectric efficiency. With an exhaustive number of possible combinations to choose from, scientists use theoretical calculations to guide their search for promising materials. The materials' extreme complexity, however, requires theorists to make various assumptions that have each led to different approaches.

The most common approach is the "rigid band" approximation, which provides a relatively simple model of a material's electronic structure, and the more complex "supercell" approach, which gives a detailed picture of its ideal atomic arrangement. Some scientists have said the rigid band approach is too simple and inaccurate to be useful.

Snyder's team reported exactly the opposite result. Their calculations showed that the rigid band approach was actually more accurate than the supercell method in predicting the observed properties of a popular thermoelectric - lead telluride - doped with a small amount of sodium, potassium or thallium.

"Supercell approaches are accurate for very specific dopant cases, but they do not take into account the various defects present in real materials," Snyder said. By using the simpler rigid band model, he added, scientists should be able to more quickly identify promising new and more-efficient thermoelectric compositions.

The article, "Validity of rigid band approximation of PbTe thermoelectric materials" is authored by Yoshiki Takagiwa, Yanzhong Pei, Gregory Pomrehn and G. Jeffrey Snyder. The paper is among the first to appear in the new journal APL Materials, which is produced by AIP Publishing.

.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
21 percent of homes account for 50 percent of greenhouse gas emissions
Washington DC (SPX) Jul 01, 2013
Energy conservation in a small number of households could go a long way to reducing greenhouse gas emissions, scientists are reporting. Their study, which measured differences in energy demands at the household level, appears in the ACS journal Environmental Science and Technology. Dominik Saner and colleagues point out that the energy people use to power their homes and to satisfy their m ... read more


ENERGY TECH
Metamorphosis of Moon's Water Ice Explained

Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

ENERGY TECH
Dry run for the 2020 Mars Mission

Opportunity Clocks Up 37 Kilometers Of Roving Mars

Mars Rover Opportunity Trekking Toward More Layers

Mars had oxygen-rich atmosphere 4,000 million years ago

ENERGY TECH
Voyager 1 Explores Final Frontier Of Our Solar Bubble

NASA's Voyager 1 approaches outer limit of solar system

PayPal launches quest for intergalactic currency

NASA Bill Would 'End Reliance on Russia,' Nix Asteroid Capture Project

ENERGY TECH
China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

Shenzhou 10 Returns Safely To Earth

ENERGY TECH
Russian cosmonauts conduct space station tasks in spacewalk

Accelerating ISS Science With Upgraded Payload Operations Integration Center

Strange Flames on the ISS

Europe's space truck docks with ISS

ENERGY TECH
Russian Proton M Rocket Explodes Just After Blast Off

Arianespace takes delivery of its next Ariane 5 at the Spaceport

SpaceX Will Launch Turkmenistan Satellite For Thales Alenia Space

New Mexico Space Grant Consortium student experiments blast into space from Spaceport America

ENERGY TECH
Astronomers Detect Three 'Super-Earths' in Nearby Star's Habitable Zone

Three planets in habitable zone of nearby star

1 star, 3 habitable planets

Gas-giant exoplanets seen clinging close to their parent stars

ENERGY TECH
Low-power Wi-Fi signal tracks movement -- even behind walls

Gartner trims global IT spending forecast for the year

China sets rare earth export quota for second half

EU approves compromise on 'shipbreaking' in South Asian countries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement