Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Even geckos can lose their grip
by Staff Writers
Linkoping, Sweden (SPX) Jul 11, 2014


Stefan Lindstrom and Lars Johansson.

Not even geckos and spiders can sit upside down forever. Nanophysics makes sure of that. Mechanics researchers at Linkoping University have demonstrated this in an article just published in Physical Review E. Knowledge that can be of great industrial benefit.

Geckos and spiders that seem to be able to sit still forever, and walk around upside down have fascinated researchers worldwide for many years. We will soon be able to buy smart new fasteners that hold the same way as the gecko's foot. But the fact is, sooner or later the grip is lost, no matter how little force is acting on it.

Stefan Lindstrom and Lars Johansson, researchers at the Division of Mechanics, Linkoping University, together with Nils Karlsson, recent engineering graduate, have demonstrated this in an article just published in Physical Review E.

Still, it's a phenomenon that can have considerable benefits, for instance in the production of graphene. Graphene consists only of one layer of atom, and which must be easily detached from the substrate.

In his graduation project at the Division of Mechanics, Nils Karlsson studied both the mechanics of the gecko's leg as well as the adhesion of its foot to the substrate.

The gecko's foot has five toes, all with transverse lamellae. A scanning electron microscope shows that these lamellae consist of a number of small hair-like setae, each with a little film at the end, which resembles a small spatula. These spatulae, roughly 10 nm thick, are what adheres to the substrate.

"At the nano level, conditions are a bit different. The movement of the molecules is negligible in our macroscopic world, but it's not in the nano world. Nils Karlsson's graduation project suggested that heat, and consequently the movement of the molecules, has an effect on the adhesion of these spatulae. We wanted to do further analyses, and calculate what actually happens," explains Stefan Lindstrom.

They refined the calculations, so they applied to a thin film in contact with an uneven surface. So, the film only contacts the uppermost parts of the uneven surface. The researchers also chose to limit the calculations to the type of weak forces that exist between all atoms and molecules - van der Waals forces.

"It's true, they are small, but they are always there and we know that they are extremely reliant on distance," says Lars Johansson.

This means that the force is much stronger where the film is very close to a single high point, than when it is quite close to a number of high points. Then, when the film detaches, it does this point by point. This is because both contact surfaces are moving - vibrating. These are tiny movements, but at some stage the movements are in sync, so the surfaces actually lose contact. Then the van der Waals force is so small that the film releases.

"So in reality, we can detach a thin film from the substrate simply by waiting for the right moment. This doesn't require a great deal of force. The part of the film that remains on the substrate vibrates constantly, and the harder I pull on this part, the faster the film will detach. But how long it takes for the film to detach also depends on the structure of the substrate and the film's stiffness," says Stefan Lindstrom.

In practice this means that even a small force over a long period will cause the film, or for that matter the gecko's foot, to lose its grip. Which is fine for the gecko, who can scoot off, but maybe not so good for a fastening system. Still - in the right application, this knowledge can be of great industrial benefit.

.


Related Links
Linkoping University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Carbon-fiber epoxy honeycombs mimic performance of balsa wood
Boston MA (SPX) Jul 11, 2014
In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood. Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbi ... read more


TECH SPACE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

TECH SPACE
First LDSD Test Flight a Success

Rover Has Enough Energy for Some Late-Night Work

Curiosity travels through ancient glaciers on Mars

New Type of Dust in Martian Atmosphere Discovered

TECH SPACE
Taiwan's tourism revenue hits record high in 2013

Fruit fly immunity fails with fungus after (space)flight

From Deep Sea to Deep Space

Commercial Crew Partners Focus on Testing, Analysis to Advance Designs

TECH SPACE
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

TECH SPACE
NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

Closing the recycling circle

Space station astronauts wager friendly bet on USA vs. Germany match

TECH SPACE
Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Singapore launches its first nano-satellite

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

TECH SPACE
Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

TECH SPACE
Even geckos can lose their grip

Platonic solids generate their four-dimensional analogues

Consider the 'Anticrystal'

Inspired by Nature, Researchers Create Tougher Metal Materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.