Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Einstein was right - So far
by Staff Writers
Munich, Germany (SPX) Apr 29, 2013


Einstein's general theory of relativity, which explains gravity as a consequence of the curvature of spacetime created by the presence of mass and energy, has withstood all tests since it was first published almost a century ago. But it cannot be the final explanation and must ultimately break down.

An international team has discovered an exotic double object that consists of a tiny, but unusually heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right it is also a unique laboratory for testing the limits of physical theories.

This pulsar is named PSR J0348+0432 and is the remains of a supernova explosion. It is twice as heavy as the Sun, but just 20 kilometres across. The gravity at its surface is more than 300 billion times stronger than that on Earth and at its centre every sugar-cubed-sized volume has more than one billion tonnes of matter squeezed into it. Its companion white dwarf star is only slightly less exotic; it is the glowing remains of a much lighter star that has lost its atmosphere and is slowly cooling.

"I was observing the system with ESO's Very Large Telescope, looking for changes in the light emitted from the white dwarf caused by its motion around the pulsar," says John Antoniadis, a PhD student at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and lead author of the paper.

"A quick on-the-spot analysis made me realise that the pulsar was quite a heavyweight. It is twice the mass of the Sun, making it the most massive neutron star that we know of and also an excellent laboratory for fundamental physics."

Einstein's general theory of relativity, which explains gravity as a consequence of the curvature of spacetime created by the presence of mass and energy, has withstood all tests since it was first published almost a century ago. But it cannot be the final explanation and must ultimately break down [1].

Physicists have devised other theories of gravity that make different predictions from general relativity. For some of these alternatives, these differences would only show up in extremely strong gravitational fields that cannot be found in the Solar System. In terms of gravity, PSR J0348+0432 is a truly extreme object, even compared to the other pulsars that have been used in high precision tests of Einstein's general relativity [2].

In such strong gravitational fields small increases in the mass can lead to large changes in the spacetime around such objects. Up to now astronomers had no idea what would happen in the presence of such a massive neutron star as PSR J0348+0432.It offers the unique opportunity to push tests into new territory.

The team combined Very Large Telescope observations of the white dwarf with very precise timing of the pulsar from radio telescopes [3]. Such a close binary radiates gravitational waves and loses energy. This causes the orbital period to change very slightly and the predictions for this change from general relativity and other competing theories are different.

"Our radio observations were so precise that we have already been able to measure a change in the orbital period of 8 millionths of a second per year, exactly what Einstein's theory predicts," states Paulo Freire, another team member.

This is just the start of detailed studies of this unique object and astronomers will be using it to test general relativity to ever greater precision as time goes on.

Notes:
[1] General relativity is not consistent with the other great theory of twentieth century physics, quantum mechanics. It also predicts singularities under some circumstances, where some quantities tend to infinity, such as the centre of a black hole.

[2] The first binary pulsar, PSR B1913+16, was discovered by Joseph Hooton Taylor, Jr. and Russell Hulse, for which they won the 1993 Nobel Prize in Physics. They accurately measured the changes in the properties of this remarkable object and showed that they were precisely consistent with the gravitational radiation energy losses predicted by general relativity.

[3] This work made use of data from the Effelsberg, Arecibo and Green Bank radio telescopes as well as the ESO Very Large Telescope and the William Herschel Telescope optical telescopes.

This research was presented in a paper "A Massive Pulsar in a Compact Relativistic Orbit", by John Antoniadis et al., to appear in the journal Science on 26 April 2013.

.


Related Links
ESO
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Einstein's theory holds up in deep space
Washington (AFP) April 25, 2013
Some 7,000 light years away, Einstein's theory of general relativity has stood up to its most intense test yet, scientists said on Thursday. The project involved observing a massive, fast-spinning star called a pulsar, and its companion white dwarf - a smaller but very dense star that is dying, having lost most of its outer layers - doing a dizzying orbital dance. The unusually heavy n ... read more


TIME AND SPACE
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

TIME AND SPACE
Dutch reality show seeks one-way astronauts for Mars

Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

TIME AND SPACE
NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

What makes a good astronaut?

TIME AND SPACE
Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

TIME AND SPACE
Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

Spacewalkers Deploy Plasma Experiment, Install Navigational Aid

The New and Improved ISS Facilities Brochure

TIME AND SPACE
On the record with... Stephane Israel, Arianespace Chairman and CEO

Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

TIME AND SPACE
Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

Star-and Planet-Forming Regions May Hold Key to Life's Chirality

TIME AND SPACE
Vaterite: Crystal within a crystal helps resolve an old puzzle

Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement