Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Do Milky Way's Companions Spell Trouble for Dark Matter?
by Staff Writers
Bonn, Germany (SPX) Apr 26, 2012


The galaxy pair UGC 9618 / VV 340, two spiral galaxies at the beginning of a collision. Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University). For a larger version of this image please go here.

Astronomers from the University of Bonn in Germany have discovered a vast structure of satellite galaxies and clusters of stars surrounding our galaxy, stretching out across a million light-years. The work challenges the existence of dark matter, part of the standard model for the evolution of the universe. PhD student and lead author Marcel Pawlowski reports the team's findings in a paper in the journal Monthly Notices of the Royal Astronomical Society.

The Milky Way, the galaxy we live in, consists of around three hundred thousand million stars as well as large amounts of gas and dust arranged with arms in a flat disk that wind out from a central bar.

The diameter of the main part of the Milky Way is about 100,000 light-years, meaning that a beam of light takes 100,000 years to travel across it. A number of smaller satellite galaxies and spherical clusters of stars (so-called globular clusters) orbit at various distances from the main Galaxy.

Conventional models for the origin and evolution of the universe (cosmology) are based on the presence of 'dark matter', invisible material thought to make up about 23% of the content of the cosmos that has never been detected directly. In this model, the Milky Way is predicted to have far more satellite galaxies than are actually seen.

In their effort to understand exactly what surrounds our galaxy, the scientists used a range of sources from twentieth century photographic plates to images from the robotic telescope of the Sloan Deep Sky Survey. Using all these data they assembled a picture that includes bright 'classical' satellite galaxies, more recently detected fainter satellites and the younger globular clusters.

"Once we had completed our analysis, a new picture of our cosmic neighborhood emerged", says Pawlowski. The astronomers found that all the different objects are distributed in a plane at right angles to the galactic disk. The newly-discovered structure is huge, extending from as close as 33,000 light-years to as far away as one million light-years from the center of the galaxy.

Team member Pavel Kroupa, professor for astronomy at the University of Bonn, adds, "We were baffled by how well the distributions of the different types of objects agreed with each other".

As the different companions move around the Milky Way, they lose material, stars and sometimes gas, which forms long streams along their paths. The new results show that this lost material is aligned with the plane of galaxies and clusters too.

"This illustrates that the objects are not only situated within this plane right now, but that they move within it", says Pawlowski. "The structure is stable."

The various dark matter models struggle to explain this arrangement. "In the standard theories, the satellite galaxies would have formed as individual objects before being captured by the Milky Way", explains Kroupa. "As they would have come from many directions, it is next to impossible for them to end up distributed in such a thin plane structure."

Postdoctoral researcher and team member Jan Pflamm-Altenburg suggests an alternative explanation. "The satellite galaxies and clusters must have formed together in one major event, a collision of two galaxies."

Such collisions are relatively common and lead to large chunks of galaxies being torn out due to gravitational and tidal forces acting on the stars, gas and dust they contain, forming tails that are the birthplaces of new objects like star clusters and dwarf galaxies.

Pawlowski adds, "We think that the Milky Way collided with another galaxy in the distant past. The other galaxy lost part of its material, material that then formed our galaxy's satellite galaxies and the younger globular clusters and the bulge at the galactic center. The companions we see today are the debris of this 11 billion year old collision."

Kroupa concludes by highlighting the wider significance of the new work. "Our model appears to rule out the presence of dark matter in the universe, threatening a central pillar of current cosmological theory. We see this as the beginning of a paradigm shift, one that will ultimately lead us to a new understanding of the universe we inhabit."

The work appears in "The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way", M. S. Pawlowski, J. Pflamm-Altenburg, P. Kroupa, Monthly Notices of the Royal Astronomical Society, in press.

.


Related Links
University of Bonn
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Mysterious 'dark matter' even weirder: astronomers
Paris (AFP) April 18, 2012
Astronomers scanning the Milky Way said on Wednesday they were baffled when they failed to spot something invisible. To explain: the team were looking for evidence of dark matter, the substance that is believed to comprise 83 percent of matter in the Universe. But it cannot be detected by the naked eye or by existing astronomical techniques. Instead it is detected indirectly, from th ... read more


STELLAR CHEMISTRY
Moon Express Delivers Lunar Mission Design Report for mining the Moon for precious resources

NASA's Lunar Reconnaissance Orbiter Brings 'Earthrise' to Everyone

Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

STELLAR CHEMISTRY
Martian Volcanic Glass Could Be Hotspot for Life

Mars Express explores the roots of Martian volcanoes

Lava flows carved Mars valleys: study

Mars Astronauts Could Risk DNA Damage

STELLAR CHEMISTRY
Space -- the next frontier for Hillary Clinton?

Company to Create 'Gas Stations' in Space

Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Three astronauts to land from ISS Friday

Expedition 30 Crew Returning Home Friday

Russia brings three spacemen safely back to Earth

Three astronauts land on Earth from ISS in Russian capsule

STELLAR CHEMISTRY
Indian rocket being fuelled for Risat-1 launch

Assembly begins for the third Ariane 5 to be launched in 2012

ILS Proton Successfully Launches Y1B Satellite For Yahsat

SpaceX aims for May 7 launch to ISS

STELLAR CHEMISTRY
Three Earthlike planets identified by Cornell astronomers

Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

STELLAR CHEMISTRY
I like to break things

Beyond stain-resistant: New fabric coating actively shrugs off gunk

Scientists Predict Paradoxical Laser Effect

Japan, Kazakhstan to jointly develop rare earths: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement