Subscribe free to our newsletters via your
. 24/7 Space News .

Discovery of an Ancient Celestial City Undergoing Rapid Growth
by Staff Writers
Tokyo, Japan (SPX) Sep 24, 2012

The current research team focused their search on star-forming galaxies associated with the protocluster USS1558-003, which is 11 billion light years way from Earth. Click here for detailed images and captions.

Using the Multi-Object Infrared Camera and Spectrograph (MOIRCS) mounted on the Subaru Telescope, a team of astronomers led by Dr. Masao Hayashi (National Astronomical Observatory of Japan or NAOJ) and Dr. Tadayuki Kodama (Subaru Telescope, NAOJ) has discovered a protocluster of galaxies in the midst of a vigorous process of formation.

It is the densest and most active protocluster ever identified at so great a distance, 11 billion light years away from Earth (Note 1). The star formation rate in the protocluster is intense, sometimes reaching a rate over 100 times greater than that of the Milky Way Galaxy.

Although old, inactive elliptical galaxies dominate present-day galaxy clusters, the recently discovered protocluster is a site where progenitors of clusters of current elliptical galaxies were just forming and growing rapidly.

It will serve as an ideal laboratory for investigating how a cluster develops and how a special, dense environment can influence the formation and evolution of galaxies.

Research to Investigate the Formation of Protoclusters
The properties of galaxies strongly depend upon where they reside. Some galaxies occupy crowded, gravitationally bound regions called "galaxy clusters" and "galaxy groups" while others live in deserted areas called "general fields".

In the present-day Universe, galaxy clusters generally contain old, elliptical galaxies that are not actively forming stars, and general fields usually encompass young disk galaxies that are actively forming stars. Why do these galaxies segregate into different habitats in the Universe?

Investigation of the formation of distant protoclusters that are progenitors of local galaxy clusters may provide an answer. Clusters or "ancient cities" of galaxies are not everywhere. Discovering them in their "adolescence", when the surrounding environment influences their development, is likely to yield the best basis for studying how clusters of galaxies form.

The current research team focused their search on star-forming galaxies associated with the protocluster USS1558-003 (Note 2), which is 11 billion light years way from Earth. This target is a very dense region of old, mature or "red-burning" galaxies (Note 3), and occurs in the epoch from 9 to 11 billion years ago when the adolescent galaxies were growing vigorously.

The team used MOIRCS mounted on the Subaru Telescope for their research; they also fitted MOIRCS with a narrowband filter customized for this target to capture the H-alpha emission lines (Note 4) coming from the star-forming regions. In addition, they searched for extremely red galaxies that are inactive and passively evolving.

Results Showing an Ancient Celestial City Undergoing Rapid Growth
The wide-field observations revealed that three notable galaxy groups of various sizes make up the protocluster.

The number of galaxies concentrated in these clumps is very high, about 15 times greater than that of general fields in the Universe at the same cosmic time. No other region known so far in the ancient Universe of 11 billion years ago or more has so many strongly clustered galaxies.

The intense star-forming activity in the entire observed region of the protocluster amounts to new star formation equivalent to 10,000 Suns per year. The activity is analogous to watching the swift construction of an ancient, developing city, when elliptical galaxies were very young and growing rapidly in a dense environment.

Another important discovery about this protocluster is that almost all of the transitioning red-burning galaxies tend to be confined to the dense clumps. Their apparent preference for a location in the densest environment probably means that the protocluster is actually in its growth phase and having some environmental effects on the galaxies.

The research team plans to examine the individual galaxies more closely in order to reveal what is actually happening as the cluster is forming.

Future Prospects from the MAHALO-Subaru Project
The results presented in this article are among the many exciting new findings that are just emerging from the "MAHALO-Subaru" project (Note 5), which focuses on identifying the fundamental physical processes that determine the properties of galaxies in dense environments.

The project's research team, led by Dr. Kodama, is conducting systematic observations of a large sample of galaxy clusters and protoclusters at various distances, hence at various cosmic times.

The results show that galaxy clusters observed at distances greater than 9 billion light years away generally have active star formation, even in their densest central regions, in contrast to present-day clusters in which old, inactive elliptical galaxies dominate.

It appears that clusters grow from the inside out. They first grow rapidly in cores of protoclusters, and the sites of active growth of galaxies spread to the surrounding outskirts, like suburbs forming at the periphery of a city.

The research contributes to an understanding of how clusters and the galaxies within them form and grow with cosmic time. The research team sums it up: "We are now at the stage when we are using various new instruments to show in detail the internal structures of galaxies in formation so that we can identify the physical mechanisms that control and determine the properties of galaxies."

These results are published in the September 20, 2012 edition of the Astrophysical Journal (Hayashi et al., 2012, ApJ, 757, 15).


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Astrochemistry Enters a Bold New Era with ALMA
Socorro, NM (SPX) Sep 24, 2012
Combining the cutting-edge capabilities of the ALMA telescope with newly-developed laboratory techniques, scientists are opening a completely new era for deciphering the chemistry of the Universe. A research team demonstrated their breakthrough using ALMA data from observations of the gas in a star-forming region in the constellation Orion. Using new technology both at the telescope and in ... read more

Protection for Moon, Mars astronauts eyed

Russia to start research base on the Moon

Remains of astronaut legend Neil Armstrong buried at sea

Memorial service honors 'man on the moon' Armstrong

Why Curiosity Matters

Robotic Arm Tools Get to Work

NASA Mars Rover Targets Unusual Rock Enroute to First Destination

Curiosity's Stars and Stripes

B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

ISS Crew Enjoys Light Duty Day

Europe's ATV-3 Spacecraft to Readjust Space Station's Orbit

California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

Cancer research yields unexpected new way to produce nylon

Yale Researchers Call for Specialty Metals Recycling

Drink, flirt, stumble home: there's a beer fest app for that

Researchers Demonstrate Cheaper Way To Produce NFO Thin Films

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement