Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
DARPA, Industry Collaborate to Knock Down Microelectronics Barriers
by Staff Writers
Washington DC (SPX) Jan 21, 2013


Semiconductor Technology Advanced Research Network (STARnet).

The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages that cost less.

In recent years, power requirements, excessive heat and other problems associated with physical limitations have reduced the advantages of continuing to shrink size. For the foreseeable future, industry will continue to decrease the size of transistors, increase the number of integrated cores and improve all aspects of the existing architectures.

While challenging problems must be met and the ability to achieve the potential improvements is far from assured, these changes are likely to produce more evolutionary improvements.

Working together, the Defense Advanced Research Projects Agency (DARPA) along with key companies from the semiconductor and defense industries are establishing the Semiconductor Technology Advanced Research Network (STARnet). This effort will support large university communities to look beyond the current evolutionary directions and make the discoveries that will drive technology innovation beyond what can be imagined for electronics today.

This community of leading academics will be supported by the combined resources and expertise of DARPA and participating companies, including at least $40 million each year in basic research funding.

"STARnet is composed of six collaborating multi-university teams taking a fresh look at the challenges we face, to find those ideas that will drive innovation for the next several decades. Each of these six centers is composed of several university teams jointly working toward a single goal: knocking down the barriers that limit the future of electronics" said Jeffrey Rogers, DARPA program manager.

"With such an ambitious task, we have implemented a nonstandard approach. Instead of several different universities competing against each other for a single contract, we now have large teams working collaboratively, each contributing their own piece toward a large end goal."

The six academic teams are grouped into the following centers:

Function Accelerated nanomaterial Engineering (FAME): The FAME Center focuses on nonconventional materials and devices incorporating nanostructures with quantum-level properties to enable analog, logic and memory devices for beyond-binary computation. FAME is hosted at the University of California-Los Angeles with collaborators from Caltech, Cornell, Columbia, MIT, North Carolina State University, Purdue, Rice, Stanford, University of California-Irvine, University of California-Berkeley, University of California-Riverside, University of California-Santa Barbara, and Yale.

Center for Spintronic Materials, Interfaces and Novel Architectures (C_SPIN): Electron spin-based memory and computation have the potential to overcome the power, performance and architectural constraints of conventional CMOS-based devices. C_SPIN focuses on magnetic materials, spin transport, novel spin-transport materials, spintronic devices, circuits and novel architectures. C_SPIN is hosted at the University of Minnesota with collaborators from Carnegie-Mellon University, Cornell University, Johns Hopkins University, Massachusetts Institute of Technology, Pennsylvania State University, Purdue University, University of Alabama, University of California-Riverside, University of California-Santa Barbara, University of Iowa, University of Michigan, and University of Wisconsin-Madison.

Systems on Nanoscale Information fabriCs (SONIC): Explores a drastic shift in the model of computation and communication from a deterministic digital foundation to a statistical one. Many applications such as imaging processing and communications do not require one hundred percent perfectly error free computation and this Center will produce new strategies and designs optimized with this in mind. SONIC is hosted at the University of Illinois-Urbana Champaign with collaborators from the University of California-Berkeley, University of California-San Diego, Stanford University, Oregon State University, Princeton University, University of Michigan-Ann Arbor, and Carnegie Mellon University.

Center for Low Energy Systems Technology (LEAST): The overriding goal is low power electronics. For this purpose it addresses nonconventional materials and quantum-engineered devices, and projects implementation in novel integrated circuits and computing architectures. LEAST is hosted at Notre Dame University, with collaborators from Carnegie Mellon University, Georgia Tech, Penn State University, Purdue University, University of California-Berkeley, University of California-San Diego, University of California-Santa Barbara, University of Texas-Dallas and University of Texas-Austin.

The Center for Future Architectures Research (C-FAR) The scope of C-FAR is to investigate highly parallel computing implemented in nonconventional computing systems, but based on current CMOS integrated circuit technology. C-Far is based at the University of Michigan with collaborators from Columbia University, Duke University, Georgia Institute of Technology, Harvard University, Massachusetts Institute of Technology, Northeastern University, Princeton university, Stanford University, University of California-Berkeley, University of California-San Diego, University of California-Los Angeles, University of Illinois, Urbana-Champaign, University of Virginia and the University of Washington.

The TerraSwarm Research Center (TerraSwarm): The Center will focus on the challenge of developing technologies that provide innovative, city-scale capabilities via the deployment of distributed applications on shared swarm platforms. Two scenarios are of interest: a city during normal operation and a city during natural or man-made disasters (such as accidents, failures, hurricanes, earthquakes or terrorist attacks). Terraswarm is hosted at the University of California-Berkeley with collaborators from California Institute of Technology, Carnegie Mellon University, University of California-San Diego, University of Illinois-Urbana Champaign, University of Michigan, University of Pennsylvania, University of Texas-Dallas, and the University of Washington.

"STARnet is working on tomorrow's technology and also developing tomorrow's technologists," added Rogers. "Today's graduate students are getting the hands-on experience they need to apply these breakthroughs to future Defense and commercial systems."

.


Related Links
DARPA
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Intel profits slide, outlook weak as woes continue
San Francisco (AFP) Oct 16, 2012
Intel Corp. on Thursday reported falling profits for the fourth quarter and full year 2012, and offered a disappointing outlook in another sign of the chip giant's woes from a shifting tech landscape. The California tech titan said its profit in the fourth quarter fell 27 percent from a year earlier to $2.5 billion, resulting in a full-year profit down 15 percent at $11 billion. Revenue ... read more


CHIP TECH
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

CHIP TECH
Possible Clues to Ancient Subsurface Biosphere on Mars

NASA's Veteran Mars Rover Ready to Start 10th Year

Opportunity Investigating Light-toned Veins in Rock Outcrop

Reull Vallis: a river ran through it

CHIP TECH
TDRS-K Offers Upgrade to Vital Communications Net

An Astronaut's Guide

Mathematical breakthrough sets out rules for more effective teleportation

Orion Teamwork Pays Off

CHIP TECH
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

CHIP TECH
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

CHIP TECH
NASA Selects Experimental Commercial Suborbital Flight Payloads

Payload elements come together in Starsem's wrap-up Soyuz mission from Baikonur Cosmodrome for Globalstar

Amazonas 3 in Kourou for Ariane 5 year-opening launch campaign

Suborbital Space Research and Education Conference Scheduled for June 2013

CHIP TECH
New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

CHIP TECH
Novel sensor provides bigger picture

Dutch architect to build house with 3D printer

Researchers move Barkhausen Effect forward

Computer breakthrough: Code of life becomes databank




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement