Subscribe free to our newsletters via your
. 24/7 Space News .




MICROSAT BLITZ
CubeSat Instruments to Demonstrate NASA Firsts
by Staff Writers
Greenbelt MD (SPX) Nov 19, 2014


Todd Bonalsky and Eftyhia Zesta pose with a special gimbal table they designed to test CubeSat-compatible magnetometer systems at the Goddard Magnetic Test Facility. Image courtesy NASA Goddard and Bill Hrybyk. For a larger version of this image please go here.

The Dellingr six-unit CubeSat, which is taking its developers just one year to design, build and integrate, won't be the only potentially groundbreaking capability for NASA. Its heliophysics payloads also are expected to significantly advance science on tiny platforms.

Making Dellingr's maiden journey perhaps as early as January 2016 are two different magnetometer systems and a miniaturized ion/mass spectrometer. All three received support from the Internal Research and Development (IRAD) program at NASA's Goddard Space Flight Center in Greenbelt, Maryland, said Nikolaos Paschalidis, Goddard's heliophysics technology lead and Dellingr payload manager.

Like their colleagues on the Dellingr-development team, instrument scientists and engineers had just one year to complete their payloads. "Building an instrument in just one year is a challenge," said Paschalidis. "It has been very intense," agreed Todd Bonalsky, a Goddard engineer who designed one of Dellingr's two magnetometer systems. "It will pay back in the end. We have a niche that needs to be filled."

Never-Before-Flown Magnetometer Systems
According to Bonalsky, NASA currently lacks a low-power, inexpensive magnetometer small enough to fit inside a CubeSat. As a result, the CubeSat community relies on commercial-off-the-shelf magnetometers "that do not have the necessary accuracy or precision for science-grade measurements of the auroral zone," Bonalsky said.

He believes his instrument - coupled with another novel, no-boom magnetometer created by Principal Investigator Eftyhia Zesta - will give the CubeSat community a tool that delivers high-quality, highly accurate data of Earth's magnetic fields for a fraction of the cost. However, he readily concedes his instrument in no way rivals the larger, more robust magnetometers Goddard has built for NASA's MAVEN, Juno and other interplanetary missions.

"Ours isn't as capable as these heritage magnetometers, but for our purposes we really don't need their level of sophistication. We need something that is less expensive, can fit into a CubeSat, and offers high-resolution, highly accurate data," he said.

Achieving this milestone - which will be a first for CubeSats - involved a marriage of sorts.

All spacecraft generate their own magnetic fields. To prevent those fields from contaminating the magnetic forces scientists actually want to measure, magnetometers are typically placed on a large boom that extends far from the spacecraft.

CubeSats, however, don't have the real estate to accommodate such a large device. Therefore, Bonalsky only had room for a 30-inch boom - which is better, but not ideal. "Even when deployed, the magnetometer will still be in a fairly magnetically dirty area," he said.

Enter the no-boom magnetometer system, a versatile capability that promises scientific-grade observations on a variety of platforms, including CubeSats. "It will allow us to take advantage of any potential future ride opportunity due to its easy integration and low requirements on the bus functions," Zesta said.

Comprised of multiple miniaturized fluxgate magnetometer sensors placed inside the satellite bus, the no-boom magnetometer will measure the magnetic fields or "noise" generated by torquers, solar panels, motors and other hardware on the Dellingr spacecraft.

Sophisticated computer algorithms that Zesta's team created then will analyze both the external and internal magnetometer data to subtract spacecraft-generated noise from the actual science data.

"The Dellingr project is a great opportunity to see how this will work," Bonalsky said, adding that both magnetometer systems will undergo testing at the Goddard Magnetic Test Facility in November. A complete integration must be completed by the end of December.

"Magnetic field measurements are perhaps the most fundamental type of measurement in heliophysics," Zesta said. "CubeSats can offer an inexpensive means to gather these multipoint measurements, which we can use to improve global models."

History-Making Spectrometer
The third payload, a miniaturized ion/mass spectrometer developed specifically for CubeSats by a team led by Paschalidis and Goddard heliophysicist Sarah Jones, is an improved duplicate of another that will be launched aboard the National Science Foundation-funded ExoCube mission in January 2015.

"CubeSats provide easy access to space," said Paschalidis, who, while building the Dellingr payload, completed and delivered the ExoCube instrument to the California Polytechnic State University in July. The university is leading the ExoCube mission.

"They offer the potential to discover something of interest in a relatively short period of time and the capability to fly a constellation of CubeSats for simultaneous, multipoint measurements, something which has been the dream mission for many years. That's how the CubeSat business will evolve."

Like its ExoCube sibling, the Dellingr instrument will measure the composition and density of various ions and neutral elements in Earth's lower exosphere and upper ionosphere, a volatile region of the upper atmosphere that affects satellite communications and creates a drag that can degrade satellite orbits.

"This will be the first time we will make direct in-situ measurements of hydrogen, and the first time since the era of NASA's Dynamic Explorer-2 in 1981-1983 to make global in-situ measurements of oxygen, helium and nitrogen," Jones said, referring to ExoCube's science goals. "We're making history with a CubeSat."

This is just the beginning, said Paschalidis. With the mass spectrometer flying on two separate spacecraft, his ultimate goal is to team with others to fly many of these instruments.

Together, they could gather simultaneous, multipoint global measurements, which he says is important to understanding the flow of mass and energy in the thermosphere, ionosphere, and magnetosphere. This process causes the upper atmosphere to inflate, creating friction that ultimately brings down satellites and other space assets. "We're going to do more with this instrument," he promised.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NASA CubeSats
Microsat News and Nanosat News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MICROSAT BLITZ
NASA Skunkworks Team Set to Deliver 6U CubeSat
Greenbelt MD (SPX) Nov 19, 2014
A NASA "skunkworks" team gave itself just one year to develop, test and integrate a newfangled CubeSat that could reliably and easily accommodate agency-class science investigations and technology demonstrations at a lower cost. The team, comprised of engineers and scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is on track to meet its self-imposed deadline. ... read more


MICROSAT BLITZ
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

MICROSAT BLITZ
Mars was warm enough for flowing water, but only briefly

Several Drives Push Opportunity Over 41-Kilometer Mark

Lockheed Martin Begins Final Assembly Of Next Mars Lander

China researchers plan Mars mission 'around 2020': state media

MICROSAT BLITZ
Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

Study Investigates How Men and Women Adapt Differently to Spaceflight

S3 concludes first phase of drop-tests

MICROSAT BLITZ
China launches new remote sensing satellite

China expects to introduce space law around 2020

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

MICROSAT BLITZ
Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

Europe's 3D printer set for ISS

Astronaut turned Twitter star, Reid Wiseman, back on Earth

MICROSAT BLITZ
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Time-lapse video shows Orion's move to Cape Canaveral launch pad

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

MICROSAT BLITZ
Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

NASA's TESS Mission Cleared for Next Development Phase

MICROSAT BLITZ
Boeing Stacks Two Satellites to Launch as a Pair

Swedish military gets upgraded radar facilityw/lll

New form of crystalline order good for thermoelectric uses

Paris pop-up store immortalises shoppers with 3D printed figurine




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.