Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Cosmic jets of young stars formed by magnetic fields
by Staff Writers
Dresden, Germany (SPX) Oct 20, 2014


This is an artist's rendering showing the birth of a star: A dust and gas cloud is forming a spiraling disk around a massive baby star while jets of material shoot from its core. Image courtesy ESO/L. Calada.

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. Now, for the first time ever, an international team of researchers has successfully tested a new model that explains how magnetic fields form these emissions in young stars.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were part of this research. Their findings have been published in the journal Science. The insights gleaned from this research may even apply to cancer therapy.

Whenever an object in space forms a rotating disc of matter, chances are that it gives rise to a "jet" - a thin, straight emission of matter which emanates from the disc's center and that looks like a spintop. These structures can be observed especially during the formation of new stars. But understanding how such thin beams are able to form within the disc is something that continues to elude scientists.

Now, HZDR researchers, along with their European, American, and Asian colleagues, have investigated this process in the lab. At LULI - the Laboratoire pour l'Utilisation des Lasers Intenses - in France, scientists hit a plastic sample with laser light which set the electrons at the target's core in motion, transforming the solid plastic object into conductive plasma.

"Think of it as a sort of rapidly expanding hot cloud of electrons and ions. On a small scale, the plasma represents a young star's accumulation of matter," explains Professor Thomas Cowan, the study's co-author and Director of the HZDR Institute of Radiation Physics.

Miniature versions of young stars for the lab
What made the experiment special was the fact that the plasma was exposed to a very powerful pulsed magnetic field. The idea behind it: under a magnetic field's influence, the normally widely scattered plasma begins to focus, forming a hollow center. This ultimately produces a shockwave, from which a very thin beam starts to project - a jet.

The experiment was set up in such a way as to allow for extrapolation to conditions as they would be encountered in the Universe: within as little as 20 nanoseconds - over 100,000 times faster than a fly flapping its wings - the lab plasma forms structures similar to a young star's jet in approximately six years.

This allowed the researchers to test their model with astronomical observations, which were made possible through space telescopes, in the last two decades. The data were in good agreement. In a jet, for instance, a crossing over of particle streams can occur, which in turn results in the formation of very hot spots.

"X-ray measurements of actual jets show these features at the exact same points as our true-to-scale plasma model in the lab," says Cowan. With its help, the researchers were able to offer a model that, for the first time ever, is capable of explaining the formation of jets solely by way of magnetic fields. Previous approaches had considered the rotation of matter about the young star another influencing factor.

The realization that plasma can be focused in this way may prove a real practical boon in the field of medical engineering. According to Cowan, it's conceivable that with the help of pulsed magnetic fields, a particularly thin proton beam could be produced for use in radiation therapy. It's what Florian Kroll, Ph.D. student at the HZDR and one of the study's co-authors, is investigating.

Special pulse generator designed at the Dresden High Magnetic Field Lab
In order to produce strong pulsed magnetic fields for the experiment, the researchers drew on the expertise at the HZDR's Dresden High Magnetic Field Lab: "We developed a special pulse generator which allowed our French colleagues to set up powerful magnetic fields within a small, enclosed lab space," says Dr. Thomas Herrmannsdorfer, head of division at the High Magnetic Field Lab. The generator - just about the size of a wardrobe - is capable of generating currents of up to 300 kiloampere.

According to Herrmannsdorfer, building such a compact facility was a real technical challenge: "Our electrical engineers came up with some very innovative solutions. This is also helping us now with developing these types of generators for application in industry and medical technology."

Currently, the pulse generator is still located at the French laser lab at Palaiseau near Paris, because beginning in December the Dresden scientists are planning on once again working together with their LULI colleagues.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
First Evidence of a Hydrogen-deficient Supernova Progenitor
Oxnard CA (SPX) Oct 20, 2014
A group of researchers led by Melina Bersten of Kavli IPMU recently presented a model that provides the first characterization of the progenitor for a hydrogen-deficient supernova. Their model predicts that a bright hot star, which is the binary companion to an exploding object, remains after the explosion. To verify their theory, the group secured observation time with the Hubble Space Te ... read more


STELLAR CHEMISTRY
China's ailing moon rover weakening

NASA Mission Finds Widespread Evidence of Young Lunar Volcanism

Russian Luna-25 Mission to Cost Billions

New Batch of Lunar Soil to be Delivered to Earth in 2023-2025

STELLAR CHEMISTRY
Mars One -- and done?

MAVEN spacecraft's first look at Mars holds surprises

NASA's Opportunity Rover Gets Panorama Image at 'Wdowiak Ridge'

Comet's Close Encounter 'One in a Million'

STELLAR CHEMISTRY
"Houston: We Have A Problem...But No Worries, Our Virtual Therapist Is On It"

Space Trips To Change World For Better: Virgin Galactic CEO

NASA Exercises Authority to Proceed with Commercial Crew Contracts

Li pledges China will boost innovation, creativity

STELLAR CHEMISTRY
China to launch new marine surveillance satellites in 2019

China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

China Exclusive: Mars: China's next goal?

STELLAR CHEMISTRY
ISS Astronauts Wrap Up Preps for Wednesday Spacewalk

Progress-M Cargo Ship To Undock From ISS On Oct 27

A Different Kind of Green Movement: Seedling Growth in Space

ISS Spacewalkers Replace Power Regulator, Move Equipment

STELLAR CHEMISTRY
Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

Soyuz Flight VS09 Report

STELLAR CHEMISTRY
Getting To Know Super-Earths

Astronomers Spot Faraway Uranus-Like Planet

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

Hubble project maps temperature, water vapor on wild exoplanet

STELLAR CHEMISTRY
Engineers find a way to win in laser performance by losing

Unstoppable magnetoresistance

Sticky business: bonding ultrastable space missions

Tailored flexible illusion coatings hide objects from detection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.