Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Cork the key to unlocking the potential of graphene
by Staff Writers
Melbourne, Australia (SPX) Dec 07, 2012


Using a method called freeze casting, the researchers were able to form chemically modified graphene into a 3D structure that mimicked cork.

Scientists have taken inspiration from one of the oldest natural materials to exploit the extraordinary qualities of graphene, a material set to revolutionise fields from computers and batteries to composite materials.

Published in Nature Communications, a Monash University study led by Professor Dan Li has established, for the first time, an effective way of forming graphene, which normally exists in very thin layers, into useful three-dimensional forms by mirroring the structure of cork.

Graphene is formed when graphite is broken down into layers one atom thick. In this form, it is very strong, chemically stable and an excellent conductor of electricity. It has a wide range of potential applications, from batteries that are able to recharge in a matter of seconds, to biological tissue scaffolds for use in organ transplant and even regeneration.

Professor Li, from the Department of Materials Engineering, said previous research had focused mainly on the intrinsic properties and applications of the individual sheets, while his team tackled the challenge of engineering the sheets into macroscopically-useable 3D structures.

"When the atomic graphene sheets are assembled together to form 3D structures, they normally end up with porous monoliths that are brittle and perform poorly," Professor Li said.

"It was generally thought to be highly unlikely that graphene could be engineered into a form that was elastic, which means it recovers well from stress or pressure."

The researchers used cork, which is lightweight yet strong, as a model to overcome this challenge.

PhD student, Ling Qiu, also from the Department of Materials Engineering, said modern techniques have allowed scientists to analyse the structure of such materials and replicate nature's efficient design.

"The fibres in cork cell walls are closely packed to maximise strength and individual cells connect in a honeycomb structure which makes the material very elastic," Mr Qiu said.

Using a method called freeze casting, the researchers were able to form chemically modified graphene into a 3D structure that mimicked cork. The graphene blocks produced were lighter than air, able to support over 50,000 times their own weight, good conductors of electricity and highly elastic - able to recover from over 80 per cent deformation.

"We've been able to effectively preserve the extraordinary qualities of graphene in an elastic 3D form, which paves the way for investigations of new uses of graphene - from aerospace to tissue engineering," Professor Li said.

"Mimicking the structure of cork has made possible what was thought to be impossible."

.


Related Links
Monash University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Daimler plans board member for China business
Berlin (AFP) Nov 18, 2012
German auto giant Daimler plans to expand its board to include a member solely responsible for the company's China business to help iron out management troubles, a German magazine reported Sunday. News weekly Der Spiegel said in its issue to hit newsstands Monday that Daimler planned to fill the newly created eighth seat on its board from within and would approve the position at the next sup ... read more


CARBON WORLDS
NASA's GRAIL Creates Most Accurate Moon Gravity Map

Chinese astronauts may grow veg on Moon

WSU researchers use 3-D printer to make parts from moon rock

China's Chang'e-3 to land on moon next year

CARBON WORLDS
NASA to send new rover to Mars in 2020

Safe Driving on Mars

Ancient Mars May Have Captured Enormous Floodwaters

NASA Announces Multi-Year Mars Program With New Rover In 2020

CARBON WORLDS
Kickstarter's creative community takes hold in Britain

Civil Space 2013 Symposium

SciTechTalk: Media fixes for space junkies

NASA Voyager 1 Encounters New Region in Deep Space

CARBON WORLDS
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

CARBON WORLDS
New Crew of ISS to Perform Two Spacewalks

Space Station to reposition for science

Spacewalks on agenda for new space crew

NASA, Roscosmos Assign Veteran Crew to Yearlong Space Station Mission

CARBON WORLDS
SPACEX Awarded Two EELV Class Missions From The USAF

Russia Set to Launch Telecoms Satellite for Gazprom

Sea Launch Delivers the EUTELSAT 70B Spacecraft into Orbit

S. Korea readies new bid to join global space club

CARBON WORLDS
Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets

CARBON WORLDS
Smartphones might soon develop emotional intelligence

Tablet technology takes teaching into 21st century

SES And ESA To Collaborate On Electra To Develop First All-Electric Small/Medium Sized Satellite Platform In Europe

Apple's CEO to bring production back to US




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement