Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Carbon dioxide 'sponge' could ease transition to cleaner energy
by Staff Writers
San Francisco CA (SPX) Aug 13, 2014


Plastic that soaks up carbon dioxide could someday be used in plant smokestacks. Image courtesy American Chemical Society.

A sponge-like plastic that sops up the greenhouse gas carbon dioxide (CO2) might ease our transition away from polluting fossil fuels and toward new energy sources, such as hydrogen. The material - a relative of the plastics used in food containers - could play a role in President Obama's plan to cut CO2 emissions 30 percent by 2030, and could also be integrated into power plant smokestacks in the future.

The report on the material is one of nearly 12,000 presentations at the 248th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday.

"The key point is that this polymer is stable, it's cheap, and it adsorbs CO2 extremely well. It's geared toward function in a real-world environment," says Andrew Cooper, Ph.D. "In a future landscape where fuel-cell technology is used, this adsorbent could work toward zero-emission technology."

CO2 adsorbents are most commonly used to remove the greenhouse gas pollutant from smokestacks at power plants where fossil fuels like coal or gas are burned. However, Cooper and his team intend the adsorbent, a microporous organic polymer, for a different application - one that could lead to reduced pollution.

The new material would be a part of an emerging technology called an integrated gasification combined cycle (IGCC), which can convert fossil fuels into hydrogen gas.

Hydrogen holds great promise for use in fuel-cell cars and electricity generation because it produces almost no pollution. IGCC is a bridging technology that is intended to jump-start the hydrogen economy, or the transition to hydrogen fuel, while still using the existing fossil-fuel infrastructure. But the IGCC process yields a mixture of hydrogen and CO2 gas, which must be separated.

Cooper, who is at the University of Liverpool, says that the sponge works best under the high pressures intrinsic to the IGCC process. Just like a kitchen sponge swells when it takes on water, the adsorbent swells slightly when it soaks up CO2 in the tiny spaces between its molecules. When the pressure drops, he explains, the adsorbent deflates and releases the CO2, which they can then collect for storage or convert into useful carbon compounds.

The material, which is a brown, sand-like powder, is made by linking together many small carbon-based molecules into a network. Cooper explains that the idea to use this structure was inspired by polystyrene, a plastic used in styrofoam and other packaging material. Polystyrene can adsorb small amounts of CO2 by the same swelling action.

One advantage of using polymers is that they tend to be very stable.

The material can even withstand being boiled in acid, proving it should tolerate the harsh conditions in power plants where CO2 adsorbents are needed. Other CO2 scrubbers - whether made from plastics or metals or in liquid form - do not always hold up so well, he says. Another advantage of the new adsorbent is its ability to adsorb CO2 without also taking on water vapor, which can clog up other materials and make them less effective. Its low cost also makes the sponge polymer attractive.

"Compared to many other adsorbents, they're cheap," Cooper says, mostly because the carbon molecules used to make them are inexpensive. "And in principle, they're highly reusable and have long lifetimes because they're very robust."

Cooper also will describe ways to adapt his microporous polymer for use in smokestacks and other exhaust streams. He explains that it is relatively simple to embed the spongy polymers in the kinds of membranes already being evaluated to remove CO2 from power plant exhaust, for instance. Combining two types of scrubbers could make much better adsorbents by harnessing the strengths of each, he explains.

.


Related Links
American Chemical Society
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Light pulses control graphene's electrical behavior
Boston MA (SPX) Aug 05, 2014
Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector. The new findings are published in the jo ... read more


CARBON WORLDS
China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

Manned Moon Mission to Cost Russia $2.8 Bln

CARBON WORLDS
Curiosity Mars Rover Prepares for Fourth Rock Drilling

Tall Boulder Rolls Down Martian Hill, Lands Upright

Opportunity Heads to 'Marathon Valley'

NASA Mars Curiosity Rover: Two Years and Counting on Red Planet

CARBON WORLDS
Yi So-yeon, Korea's first and only astronaut, resigns

XCOR Lynx Spacecraft Lands at Monterey Jet Center

Study Compiles Data on Problem of Sleep Deprivation in Astronauts

Aerojet Completes CST-100 Work for Commercial Crew Work

CARBON WORLDS
China's first private rocket firm aims for market

China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

CARBON WORLDS
ISS Spacewalkers Deploy Nanosatellite, Install and Retrieve Science

Orbital cargo ship makes planned re-entry to Earth

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

The ISS just dumped 3,300 lbs of space trash to burn up in Earth's atmosphere

CARBON WORLDS
Aerojet Rocketdyne Supports Fifth Successful Launch in Six Weeks

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

SpaceX to build world's first commercial rocket launch site in south Texas

Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

CARBON WORLDS
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

CARBON WORLDS
The Future of CubeSats

Lockheed taps GenDyn unit for Space Fence ground equipment structures

Canada's MDA receives radar antennas for satellite use

Disney develops method to capture stylized hair for 3-D-printed figurines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.