Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
At The Edge Of The Pinwheel
by Staff Writers
Moffet Field CA (SPX) Jul 30, 2008


The 'Pinwheel' galaxy, also known as Messier 101, as imaged by the Spitzer Space Telescope. Credit: NASA

The Pinwheel galaxy is gussied up in infrared light in a new picture from NASA's Spitzer Space Telescope. The fluffy-looking galaxy, officially named Messier 101, is dominated by a mishmash of spiral arms.

In Spitzer's new view, in which infrared light is color coded, the galaxy sports a swirling blue center and a unique, coral-red outer ring.

A new paper appearing July 20 in the Astrophysical Journal explains why this outer ring stands out. According to the authors, the red color highlights a zone where organic molecules called polycyclic aromatic hydrocarbons, which are present throughout most of the galaxy, suddenly disappear.

Polycyclic aromatic hydrocarbons are dusty, carbon-containing molecules found in star nurseries, and on Earth in barbeque pits, exhaust pipes and anywhere combustion reactions take place. Scientists believe this space dust has the potential to be converted into the stuff of life.

"If you were going look for life in Messier 101, you would not want to look at its edges," said Karl Gordon of the Space Telescope Science Institute in Baltimore, Md. "The organics can't survive in these regions, most likely because of high amounts of harsh radiation." To view Spitzer's Pinwheel, visit here.

The Pinwheel galaxy is located about 27 million light-years away in the constellation Ursa Major. It has one of the highest known gradients of metals (elements heavier than helium) of all nearby galaxies in our universe.

In other words, its concentrations of metals are highest at its center, and decline rapidly with distance from the center. This is because stars, which produce metals, are squeezed more tightly into the galaxy's central quarters.

Gordon and his team used Spitzer to learn about the galaxy's gradient of polycyclic aromatic hydrocarbons. The astronomers found that, like the metals, the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the galaxy. But, unlike the metals, these organic molecules quickly drop off and are no longer detected at the very outer rim.

"There's a threshold at the rim of this galaxy, where the organic material is getting destroyed," said Gordon.

The findings also provide a better understanding of the conditions under which the very first stars and galaxies arose. In the early universe, there were not a lot of metals or polycyclic aromatic hydrocarbons around. The outskirt of the Pinwheel galaxy therefore serves as a close-up example of what the environment might look like in a distant galaxy.

In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.

Other authors of the paper include Charles Engelbracht, George Rieke, Karl A. Misselt, J.D. Smith and Robert Kennicutt, Jr. of the University of Arizona, Tucson. Smith is also associated with the University of Toledo, Ohio, and Kennicutt is also associated with the University of Cambridge, England.

.


Related Links
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Ancient Galactic Magnetic Fields Stronger Than Expected
Los Alamos NM (SPX) Jul 24, 2008
Mining the far reaches of the universe for clues about its past, a team of scientists including Philipp Kronberg of Los Alamos National Laboratory has proposed that magnetic fields of ancient galaxies like ours were just as strong as those existing today, prompting a rethinking of how our galaxy and others may have formed. With powerful telescopes and sophisticated measurements, the team ... read more


STELLAR CHEMISTRY
Robotic Moon Excavation Teams Compete For NASA Prize

Space focus shifts back toward moon

ILO Instrument On Odyssey Moon's Google Lunar X PRIZE Mission

Online Casino Reports Bets On Lunar Gambling

STELLAR CHEMISTRY
KODAK Imaging Technology Explores Mars

Phoenix Lander Working With Sticky Soil

Phoenix Revises Method To Deliver Icy Sample

Lander Collects Icy Soil But Needs To Work On Delivery

STELLAR CHEMISTRY
NASA, USDA sign space research pact

Oshkosh air show honors NASA anniversary

NASA Tests Parachute For Ares Rocket

Top US astronaut welcomes space tourism

STELLAR CHEMISTRY
China Aims For World-Class Space Industry In Seven Years

Shenzhou's Spacesuit Showdown

China's Astronauts To Wear Domestic, Russian-Made Suits

Shenzhou's Unsuitable Dilemma

STELLAR CHEMISTRY
ISS Crew Inspired By Vision And Dreams Of Jules Verne

Space chiefs ponder ISS transport problem, post-2015 future

Space Station A Test-Bed For Future Space Exploration

Two Russian cosmonauts begin new space walk

STELLAR CHEMISTRY
Arianespace Ready For Fifth Ariane 5 Launch Campaign

Success Of The 1734th launch Of Soyuz

IBEX Spacecraft Takes Major Step Toward Launch

Soyuz-ST To Be Launched From French Guiana In First Half Of 2009

STELLAR CHEMISTRY
CoRoT Exoplanet Stands Out From The Crowd

COROT's New Find Orbits Sun-Like Star

Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

STELLAR CHEMISTRY
ATK MicroSat Constellation Enables NASA To Solve Scientific Mystery

LockMart Demos High Power Electric Propulsion System For TSAT Program

Big Space Junk

RT Logic Awarded South Pole TDRSS Relay II Project




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement