Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Astronomers Weigh The Coldest Brown Dwarfs With Sharpest Eyes On The Planet
by Staff Writers
St. Louis MO (SPX) Jun 02, 2008


Infrared image of the very low-temperature binary 2MASS 1534-2952AB, composed of two methane brown dwarfs. Credit: Dr. Michael Liu (Institute for Astronomy, University of Hawaii).

Astronomers have used ultrasharp images obtained with the Keck Telescope and Hubble Space Telescope to determine for the first time the masses of the coldest class of "failed stars," a.k.a. brown dwarfs.

With masses as light as 3 percent the mass of the sun, these are the lowest mass free-floating objects ever weighed outside the solar system.

The observations are a major step in testing the theoretical predictions of objects that cannot generate their own internal energy, both brown dwarfs and gas-giant planets. The new findings, which are being presented at the American Astronomical Society meeting in St. Louis, show that the predictions may have some problems.

"Mass is the fundamental parameter that governs the life-history of a free-floating object, and thus after many years of patient measurements, we are delighted to report the first masses of the very faintest, coldest brown dwarfs," said Dr. Michael Liu of the Institute for Astronomy at the University of Hawaii (IfA/UH).

"After weighing these tiny, dim, cold objects, we have confirmed that the theoretical predictions are mostly correct, but not entirely so." The team announcing the results is composed of Dr. Liu, Mr. Trent J. Dupuy (IfA/UH), and Dr. Michael J. Ireland (University of Sydney).

Brown dwarfs are a class of objects that represent the missing link between the lowest-mass stars and the gas-giant planets, such as Jupiter and Saturn. Brown dwarfs are the faintest and coolest objects that can be directly observed outside the solar system.

They emit as little as about 1/300,000 the energy of the sun and have surface temperatures comparable to the inside of a pizza oven (800 F), more than 9,000 F cooler than the surface of the sun.

"Astronomers have measured the energy output and temperatures for a myriad of brown dwarfs. However, the most important property of all is the hardest one to measure--the mass," said Dr. Ireland.

To determine the masses, the team has spent the last several years studying brown dwarfs that occur in binaries, that is two brown dwarfs that are mutually bound together by gravity and orbit each other, in a fashion similar to how Earth orbits the sun.

As first shown by Johannes Kepler in the 17th century, the total mass of any binary system can be determined by precisely measuring the orbit's size and how long it takes for the two objects to complete one orbital cycle.

"These are very challenging measurements, because brown dwarf binaries have tiny separations on the sky and orbit each other very slowly. We needed to obtain the sharpest measurements that are possible with current telescopes to precisely monitor their motion," said Mr. Dupuy.

The astronomers obtained images using the 10-meter (400-inch) Keck II Telescope on Mauna Kea, Hawaii. Keck II is equipped with a powerful adaptive optics system that corrects for the blurring of astronomical images caused by turbulence in Earth's atmosphere.

The Keck system can also employ a low-power laser to create an "artificial" star to enable such correction for almost anywhere in the sky.

The resulting images have an angular resolution as good as 1/20 of an arc second, about 1/40,000 the diameter of the full moon. A person with vision as sharp as the Keck adaptive optics system would be able to read a magazine that was about a mile away.

In fact, the positional accuracy achieved with such sharp images is equivalent to hitting a bull's-eye on a dartboard that is 8,000 miles away.

By regularly monitoring binaries with Keck adaptive optics and analyzing previous data obtained by the Hubble Space Telescope, the team was able to precisely measure the size and duration of the binaries' orbits, and thereby determine the masses.

The team measured the masses of two brown dwarf binaries. One, known as 2MASS 1534-2952AB, is composed of two "methane" brown dwarfs, the coolest type of brown dwarf, which is characterized by the presence of methane gas in their atmospheres.

This is the first mass measurement for this type of brown dwarf. The team found that the total mass of 2MASS 1534-2952AB is only 6 percent of the sun's mass, and each brown dwarf in it has a mass of about 3 percent of the sun's (about 30 times the mass of Jupiter). The other binary system, HD 130948BC, is a pair of slightly warmer "dusty" brown dwarfs with a total mass of only 11 percent of the sun's mass and individual masses of about 5.5 percent of the sun's.

Theoretical models predict the masses of brown dwarfs based on their energy output and temperature. But when the team compared their mass measurements to the theoretical predictions, they did not agree. For example, the surface temperature of 2MASS 1534-2952AB was much cooler than expected given its current level of energy output, while HD 130948BC was much warmer.

"While there is general agreement between our data and the predictions, something is not quite right with the theoretical studies of brown dwarfs, either in determining their temperatures or in predicting their energy output. Or perhaps both," said Dr. Liu. "These findings will be a challenge for the theorists, and we are inspired to measure the masses of more brown dwarfs in the coming years to better understand the problem."

The two binaries, located in the constellations of Libra (the Scales) and Bootes (the Herdsman), are about 45-60 light-years from Earth.

The two components of each binary have a typical separation of about 2 astronomical units (AU), where 1 AU is the distance from Earth to the sun (93 million miles). This is somewhat larger than the 1.5 AU distance between Mars and the sun. Their orbital periods are about 10-15 years, compared with 2 years for Mars around the sun.

The team's results are described in two upcoming papers submitted to the Astrophysical Journal. This research has been supported by the National Science Foundation and the Alfred P. Sloan Foundation.

First discovered in 1995, brown dwarfs represent a class of objects with masses less than 7 percent the mass of the sun (about 70 times Jupiter's mass).

While ordinary stars become hot and dense enough in their interiors to generate their own energy via nuclear fusion, brown dwarfs have insufficient mass to do this, so instead they steadily fade and cool over their lifetime. In many ways, brown dwarfs are very similar to gas-giant planets like Jupiter and Saturn, since both types of objects are unable to steadily generate their own energy and have very low surface temperatures.

Scientists have discovered hundreds of brown dwarfs within 100 light-years of Earth. About 15 percent of them are binary systems. Dr. Adam Burgasser (then at the University of California, Los Angeles, now at MIT) and Dr. Daniel Potter (then at IfA/UH) used the Hubble Space Telescope and the Gemini-North Observatory, respectively, to identify 2MASS 1534-2952AB and HD 130948BC as binaries around 2001.

Figure 1. Infrared image of the very low-temperature binary 2MASS 1534-2952AB, composed of two methane brown dwarfs. This was obtained with the laser guide star adaptive optics system on the Keck II Telescope, located on Mauna Kea, Hawaii. The image is 1.5 arc seconds across (about 1/1,000 of the size of the moon), and the binary's separation is about 0.2 arc seconds. Each component of the binary has a mass of about 3 percent the mass of the sun and emits about 1/100,000 the energy of the sun. These are the coolest free-floating objects ever directly weighed outside the solar system. Credit: Michael Liu (Institute for Astronomy, University of Hawaii).

Figure 2. Infrared image of the dusty brown dwarf binary HD 130948BC. The binary is seen in the upper left and has a total mass about 11 percent the mass of the sun. The binary is in orbit around a young sun-like star, seen to the lower right. This image was obtained with the adaptive optics system on the Keck II Telescope, located on Mauna Kea, Hawaii. The image is 3.75 arc seconds on a side (about 1/500 the size of the moon), and the binary's separation is about 0.1 arc seconds. Credit: Trent Dupuy and Michael Liu (Institute for Astronomy, University of Hawaii).

.


Related Links
Keck Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Strange Ring Found Circling Dead Star
Pasadena CA (SPX) May 29, 2008
NASA's Spitzer Space Telescope has found a bizarre ring of material around the magnetic remains of a star that blasted to smithereens. The stellar corpse, called SGR 1900+14, belongs to a class of objects known as magnetars. These are the cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magneti ... read more


STELLAR CHEMISTRY
Indonesian capital braces for tidal flood: officials

Targeting A Lunar Bulls-Eye

NASA seeks lunar surface concept proposals

India To Launch First Lunar By Year End

STELLAR CHEMISTRY
Energy Levels Reach Record Low For Fading Spirit Of Mars

Phoenix Scoops Up Some Martian Soil

Five Years Of Mars Express

Phoenix Lander Robotic Camera Sees Possible Ice

STELLAR CHEMISTRY
NASA to launch 'Buzz Lightyear' into space

Medvedev To Discuss Space Center And Some Arms Dealing During Kazakh Visit

Japanese plan to brew 'space beer'

French skydiver fails record freefall bid

STELLAR CHEMISTRY
Suits For Shenzhou

China Launches New Space Tracking Ship To Serve Shenzhou VII

Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

STELLAR CHEMISTRY
Japan's laboratory ready to join space 'family'

Discovery set to freight Japanese science lab to ISS

Discovery heads to space station with Japanese lab

Kibo: Japan's research unit at the International Space Station

STELLAR CHEMISTRY
NASA sets Thursday for GLAST launch

Two Ariane 5s Are Readied For Launches In May And June

Arianespace Completes The Assembly Of Another Ariane 5

Zenit Rocket Powers A Successful Sea Launch Campaign

STELLAR CHEMISTRY
Hunt For Superearth Planets Underway

Astronomers Find Tiny Planet Orbiting Tiny Star

ESA Forms Exo-Planet Roadmap Advisory Team Calls For White Papers

Exoplanet Hunt Update

STELLAR CHEMISTRY
Paralysed man takes a walk in virtual world

Study finds best times for radio signals

Self-Repairing Aircraft Could Revolutionize Aviation Safety

Northrop Grumman Resonating Gyro Achieves 10 Million Operating Hours In Space




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement