Subscribe free to our newsletters via your
. 24/7 Space News .




ICE WORLD
Ancient trapped water explains Earth's first ice age
by Staff Writers
Manchester UK (SPX) Jun 10, 2013


The North Pole area, Pilbara, Western Australia, where the samples came from. Credit: University of Manchester.

Tiny bubbles of water found in quartz grains in Australia may hold the key to understanding what caused the Earth's first ice age, say scientists. The Anglo-French study, published in the journal Nature, analysed the amount of ancient atmospheric argon gas (Ar) isotopes dissolved in the bubbles and found levels were very different to those in the air we breathe today.

The researchers say their findings help explain why Earth didn't suffer its first ice age until 2.5 billion years ago, despite the Sun's rays being weaker during the early years of our planet's formation.

"The water samples come from the Pilbara region in north-west Australia and were originally heated during an eruption of pillow basalt lavas, probably in a lake or lagoon environment," said author Dr Ray Burgess, from the University of Manchester's School of Earth, Atmospheric and Environmental Sciences.

"Evidence from the geological record indicates that the first major glaciations on Earth occurred about 2.5 billion years ago, and yet the energy of the Sun was 20 per cent weaker prior to, and during, this period, so all water on Earth should already have been frozen.

"This is something that has baffled scientists for years but our findings provide a possible explanation."

The study, done in collaboration with the CRPG-CNRS, University of Lorraine and the Institut de Physique du Globe de Paris, revealed that the ratio of two argon isotopes - 40Ar, formed by the decay of potassium (40K) with a half-life of 1.25 billion years, and 36Ar - was much lower than present-day levels. This finding can only be explained by the gradual release of 40Ar from rocks and magma into the atmosphere throughout Earth's history.

The team used the argon isotope ratio to estimate how the continents have grown over geological time and found that the volume of continental crust 3.5 billion years ago was already well-established being roughly half what it is today.

Dr Burgess said: "High levels of the greenhouse gas carbon dioxide in the early atmosphere - in the order of several percent - which would have helped retain the Sun's heat, has been suggested as the reason why the Earth did not freeze over sooner, but just how this level was reduced has been unexplained, until now.

"The continents are a key player in the Earth's carbon cycle because carbon dioxide in the atmosphere dissolves in water to form acid rain. The carbon dioxide removed from the atmosphere by this process is stabilised in carbonate rocks such as limestone and if a substantial volume of continental crust was established, as revealed by our study, then the acid weathering of this early crust would efficiently reduce the carbon dioxide levels in the atmosphere to lower global temperatures and lead to the first major ice age.

He added: "The signs of the Earth's evolution in the distant past are extremely tenuous, only fragments of highly weathered and altered rocks exists from this time, and for the most part, the evidence is indirect. To find an actual sample of ancient atmospheric argon is remarkable and represents a breakthrough in understanding environmental conditions on Earth before life existed."

The paper, 'Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics,' published online in Nature on 6 June 2013.

.


Related Links
University of Manchester
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
Ancient trapped water could explain timing of Earth's first ice age
Pilbara, Australia (UPI) Jun 5, 2013
Tiny bubbles of ancient water trapped in quartz grains in Australia may hold the key to understanding what caused the Earth's first ice age, scientists say. Researchers at the University of Manchester in England, along with French colleagues, analyzed the amount of ancient atmospheric argon gas isotopes dissolved in the bubbles and found levels were very different to those in the air we ... read more


ICE WORLD
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

ICE WORLD
Mars Rover Opportunity Trekking Toward More Layers

SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

First woman in space ready for 'one-way flight to Mars'

Aging Mars rover makes new water discoveries

ICE WORLD
TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

Why innovation thrives in cities

ICE WORLD
Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

China to host international seminar on manned spaceflight

General ready for second space mission

ICE WORLD
Star Canadian spaceman Chris Hadfield retiring

Experiments, Spacewalk Preps and Maintenance for Crew

International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ICE WORLD
Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

ICE WORLD
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

ICE WORLD
Sony eyes long game despite console launch triumph

Two New Russian Radars to Start Work Next Year

Sony wins opening skirmish in new-gen console war

Study: Moving business software to cloud promises big energy savings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement