Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
Air Quality Worsened by Paved Surfaces
by Staff Writers
Washington DC (SPX) Jun 10, 2011


A shroud of smog hangs over Houston; its air pollution is more common in hot summer months. Credit: NASA

New research focusing on the Houston area suggests that widespread urban development alters weather patterns in a way that can make it easier for pollutants to accumulate during warm summer weather instead of being blown out to sea.

The international study, led by the National Center for Atmospheric Research (NCAR), could have implications for the air quality of fast-growing coastal cities in the United States and other mid-latitude regions overseas.

The reason: the proliferation of strip malls, subdivisions and other paved areas may interfere with breezes needed to clear away smog and other pollution.

The researchers combined extensive atmospheric measurements with computer simulations to examine the impact of pavement on breezes in Houston.

They found that, because pavement soaks up heat and keeps land areas relatively warm overnight, the contrast between land and sea temperatures is reduced during the summer.

This in turn causes a reduction in nighttime winds that would otherwise blow pollutants out to sea.

In addition, built structures interfere with local winds and contribute to relatively stagnant afternoon conditions.

"The developed area of Houston has a major impact on local air pollution," says NCAR scientist Fei Chen, lead author of the new study. "If the city continues to expand, it's going to make the winds even weaker in the summertime, and that will make air pollution much worse."

While cautioning that more work is needed to better understand the impact of urban development on wind patterns, Chen says the research can eventually help forecasters improve projections of major pollution events.

Policy-makers might also consider new approaches to development as cities work to clean up unhealthy air.

The article will be published this month in the Journal of Geophysical Research, published by the American Geophyiscal Union.

The research was funded by the U.S. Air Force Weather Agency, the U.S. Defense Threat Reduction Agency, and the National Science Foundation (NSF), NCAR's sponsor.

"Growing urbanization and coastal zone populations in Houston and other port cities around the globe make our ability to understand and predict complex interactions between the urban canopy and local sea-breeze circulation ever more critical," says Brad Smull of NSF's Division of Atmospheric and Geospace Sciences." This study represents a significant step toward that objective."

In addition to NCAR, the authors are affiliated with the China Meteorological Administration, the U.S. National Oceanic and Atmospheric Administration and the University of Tsukuba in Japan. The research is built on a number of previous studies on the influence of urban areas on air pollution.

Houston, known for its mix of petrochemical facilities, sprawling suburbs and traffic jams that stretch for miles, has some of the highest levels of ground-level ozone and other air pollutants in the United States.

State and federal officials have long worked to regulate emissions from factories and motor vehicles in efforts to improve air quality.

The new study suggests that focusing on the city's development patterns and adding to its already extensive park system could provide air quality benefits as well.

"If you made the city greener and created lakes and ponds, then you probably would have less air pollution even if emissions stayed the same," Chen explains. "The night-time temperature over the city would be lower and winds would become stronger, blowing the pollution out to the Gulf."

Chen adds that more research is needed to determine whether paved areas are having a similar effect in other cities in the midlatitudes where sea breezes are strongest.

Coastal cities from Los Angeles to Shanghai are striving to reduce air pollution levels. However, because each city's topography and climatology is different, it remains uncertain whether expanses of pavement are significantly affecting their wind patterns.

For the Houston study, Chen and colleagues focused on the onset of a nine-day period of unusually hot weather, stagnant winds, and high pollution in the Houston-Galveston area that began on Aug. 30, 2000.

They chose that date partly because they could draw on extensive atmospheric measurements taken during the summer of 2000 by researchers participating in a field project known as the Texas Air Quality Study 2000.

That campaign was conducted by the National Oceanic and Atmospheric Administration, the U.S. Department of Energy, universities and the Texas Natural Resource Conservation Commission.

In addition to the real-world measurements, the study team created a series of computer simulations with a cutting-edge software tool, NCAR's Advanced Weather Research and Forecasting model.

Fei and his colleagues focused on wind patterns, which are driven by temperature contrasts between land and sea.

If Houston was covered with cropland instead of pavement, as in one of the computer simulations, inland air would heat up more than marine air during summer days and cause a sea breeze to blow onshore in the afternoon.

Conversely, the computer simulations showed that as the inland air became cooler than marine air overnight, a land breeze would blow offshore, potentially blowing away pollution.

In contrast, the actual paved surfaces of Houston absorb more heat during the day and are warmer overnight.

This results in stagnation for three reasons:

+ At night, the city's temperatures are similar to those offshore. The lack of a sharp temperature gradient has the effect of reducing winds.

+ During the day, the hot paved urban areas tend to draw in air from offshore. However, this air is offset by prevailing wind patterns that blow toward the water, resulting in relatively little net movement in the atmosphere over the city.

+ Buildings and other structures break up local winds far more than does the relatively smooth surface of croplands or a natural surface like grasslands. This tends to further reduce breezes.

"The very existence of the Houston area favors stagnation," the article states.

The study also found that drought conditions can worsen air pollution.

This is because dry soil tends to heat up more quickly than wet soil during the day. It releases more of that heat overnight, reducing water-land temperature contrast and therefore reducing nighttime breezes.

By comparing observations taken in 2000 with computer simulations of Houston-area winds and temperatures, the researchers were able to confirm that the Advanced Weather Research and Forecasting model was accurately capturing local meteorological conditions.

.


Related Links
National Center for Atmospheric Research (NCAR)
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Missing link found in the biology of cloud formation over the oceans
Athens GA (SPX) Jun 06, 2011
Scientists have known for two decades that sulfur compounds that are produced by bacterioplankton as they consume decaying algae in the ocean cycle through two paths. In one, a sulfur compound dimethylsulfide, or DMS, goes into the atmosphere, where it leads to water droplet formation - the basis of clouds that cool the Earth. In the other, a sulfur compound goes into the ocean's food web, where ... read more


BLUE SKY
NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

Looking at the volatile side of the Moon

Parts of moon interior as wet as Earth's upper mantle

BLUE SKY
Opportunity Heads Toward 'Spirit Point'

NASA Inspector General Report into the Management of MSL Project

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

Opportunity Studies Rock Outcrop

BLUE SKY
Students Build Space Habitats at NASA's Johnson Space Center

Solar system edge 'bunches' in magnetic bubbles: NASA

NASA Spending Shift to Benefit Centers Focused on Science and Technology

Japan's next gizmo: brainwave-controlled cat ears

BLUE SKY
China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

BLUE SKY
Space station puts out welcome mat

New Crew Members Arrive at ISS

Soyuz docks at ISS carrying Russian, US, Japanese astronauts

Soyuz heads to ISS carrying Russian, US, Japanese astronauts

BLUE SKY
SES-3 Satellite Arrives At Baikonour Launch Base

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

BLUE SKY
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

BLUE SKY
Japan 3-D pop avatar a real-world hit

While consoles slug it out, mobiles games zip in

HP's TouchPad going on sale in US on July 1

Greenpeace warns of radiation risk to Japan children




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement