Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Adjustable valves gave ancient plants the edge
by Staff Writers
Bristol, UK (SPX) Jun 13, 2011


File image: stomata.

Controlling water loss is an important ability for modern land plants as it helps them thrive in changing environments. New research from the University of Bristol, published in the journal Current Biology, shows that water conserving innovations occurred very early in plants' evolutionary history.

The research focused on the role of stomata, microscopic pores in the surface of leaves that allow carbon dioxide gas to be taken up for use in photosynthesis, while at the same time allowing water to escape. Instead of being fixed pores in the leaf, rather like a sieve, the stomata of modern plants are more like valves that open and close on demand.

They do this in response to environmental and chemical signals, such as light and carbon dioxide, therefore balancing the photosynthetic and water requirements of the plant. Therefore, a key evolutionary question is: when did plants develop these 'active' mechanisms of stomatal control?

Elizabeth Ruszala, a Gatsby Charitable Foundation-funded PhD student working in Professor Alistair Hetherington's research group in the School of Biological Sciences, studied the stomata of Selaginella uncinata, a member of a primitive group of plants called spikemosses, which first appeared approximately 400 million years ago.

Significantly, not only were the stomata of this ancient group of land plants able to open and close in response to changes in light and carbon dioxide, they also responded to the key plant hormone abscisic acid which regulates stomatal function - especially under drought conditions - in modern plants.

These results show that the ability to regulate stomatal aperture in response to changing environmental conditions was already present very early in plant evolution.

Research on understanding how stomata work is also directly relevant to the agriculture needs of the twenty-first century because a key target for crop breeders is the development of new varieties that produce excellent yields but use less water in the process.

Professor Alistair Hetherington said: "Understanding how plants made the successful transition from life in water to the successful colonization of the drying terrestrial environment is one of the big questions in contemporary plant biology. Our work shows that the acquisition of stomata that were able to open and close in response to changing environmental conditions, thereby helping plants to avoid drying out, was a very important step in the evolution of the land flora."

.


Related Links
University of Bristol
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Oceans played critical role in ancient global cooling
Troy NY (SPX) Jun 01, 2011
Thirty-eight million years ago, tropical jungles thrived in what are now the cornfields of the American Midwest and furry marsupials wandered temperate forests in what is now the frozen Antarctic. The temperature differences of that era, known as the late Eocene, between the equator and Antarctica were only half of what they are today. A debate has long been raging in the scientific commun ... read more


EARLY EARTH
Blood Red Moon Predicted

NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

Looking at the volatile side of the Moon

EARLY EARTH
Up, Up and Away for Mars

Opportunity Heads Toward 'Spirit Point'

NASA Inspector General Report into the Management of MSL Project

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

EARLY EARTH
Students Build Space Habitats at NASA's Johnson Space Center

Solar system edge 'bunches' in magnetic bubbles: NASA

NASA Spending Shift to Benefit Centers Focused on Science and Technology

Japan's next gizmo: brainwave-controlled cat ears

EARLY EARTH
China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

EARLY EARTH
Space station puts out welcome mat

New Crew Members Arrive at ISS

Soyuz docks at ISS carrying Russian, US, Japanese astronauts

Soyuz heads to ISS carrying Russian, US, Japanese astronauts

EARLY EARTH
SES-3 Satellite Arrives At Baikonour Launch Base

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

EARLY EARTH
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

EARLY EARTH
At the touch of a button new nano material switches properties as required

A New Way To Make Lighter, Stronger Steel - In A Flash

NIST tunes 'metasurface' with fluid in new concept for sensing and chemistry

Northrop Grumman Space Program Completes Critical Review




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement