Subscribe free to our newsletters via your
. 24/7 Space News .




SKY NIGHTLY
A young star's age can be gleamed from nothing but sound waves
by Staff Writers
Leuven, Belgium (SPX) Jul 08, 2014


In a young region like the so-called Christmas Tree Cluster, stars are still in the process of forming. A star is 'born' once it becomes optically visible (bottom right). During its further evolution, the star contracts and gets smaller in size and hotter until the core temperature is sufficient to start nuclear burning of hydrogen. This marks the end of the stellar childhood phase (bottom left). While the young star evolves from its birth to the beginning of hydrogen burning, its pulsation properties change: the least evolved, i.e., youngest, stars pulsate slower and the most evolved while the oldest stars pulsate faster. Image courtesy ESO. For a larger version of this image please go here.

Determining the age of stars has long been a challenge for astronomers. In experiments published in the journal Science, researchers at KU Leuven's Institute for Astronomy show that 'infant' stars can be distinguished from 'adolescent' stars by measuring the acoustic waves they emit.

Stars are often born in clusters, the result of contracting molecular clouds of gas and dust particles. As a star evolves from infant to adolescent, gravitational pull causes it to contract. It gets smaller in size and hotter until the core temperature is sufficient to start nuclear burning of hydrogen. At this point, the star stabilizes and becomes an 'adult'. It stays this way for vast tracts of time.

Determining the age of a young star is far from simple, and knowing which molecular cloud a star comes from gives only a vague idea of its age. But researchers have come up with a way to determine the age of stars by measuring their acoustic vibrations using ultrasound technology similar to that used in the field of medicine.

Acoustic vibrations - sound waves - are produced by radiation pressure inside stars. First author Konstanze Zwintz, a postdoctoral researcher at KU Leuven's Institute for Astronomy, and her colleagues studied the vibrations of 34 stars aged under 10 million years and sized between one and four times the mass of our sun.

"Our data shows that the youngest stars vibrate slower while the stars nearer to adulthood vibrate faster. A star's mass has a major impact on its development: stars with a smaller mass evolve slower. Heavy stars grow faster and age more quickly," says Dr. Zwintz.

While theoretical physicists have posited before that young stars vibrate differently than older stars, Zwintz' study is the first to confirm these predications using concrete data from outer space.

"We now have a model that more precisely measures the age of young stars," says Zwintz. "And we are now also able to subdivide young stars according to their various life phases."

The researchers studied the nebula known commonly as the Christmas Tree Cluster. Their data was obtained from the Canadian MOST satellite and the European CoRoT satellite as well as from ground-based facilities such as the European Southern Observatory (ESO) in Chile.

.


Related Links
KU Leuven
Astronomy News from Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SKY NIGHTLY
Remarkable White Dwarf Star Possibly Coldest, Dimmest Ever Detected
Green Bank WV (SPX) Jun 30, 2014
A team of astronomers has identified possibly the coldest, faintest white dwarf star ever detected. This ancient stellar remnant is so cool that its carbon has crystallized, forming - in effect - an Earth-size diamond in space. "It's a really remarkable object," said David Kaplan, a professor at the University of Wisconsin-Milwaukee. "These things should be out there, but because they are so d ... read more


SKY NIGHTLY
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

SKY NIGHTLY
Rover Uses Arm to Study Several Rocks and Takes Panoramic Images

ADS complete heat shields for 2016 ExoMars mission

Martian salts must touch ice to make liquid water

First LDSD Test Flight a Success

SKY NIGHTLY
Sun Sends More 'Tsunami Waves' to Voyager 1

Privately funded solar spacecraft to launch in 2016

Space Launch System Core Stage Passes Critical Design Review

Taiwan's tourism revenue hits record high in 2013

SKY NIGHTLY
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

SKY NIGHTLY
Orbital Targets July 11 For ISS Commercial Resupply Mission

Space junk damages ISS US segment

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

SKY NIGHTLY
RUAG Space wins major Ariane 5 payload fairing contract

Final ATV loaded with cargo after integration on Ariane 5

Russia Launches Rokot Carrier Rocket with Three Satellites

Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

SKY NIGHTLY
Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

SKY NIGHTLY
ASC Signal Introduces Innovative Carbon-Fiber Antenna

Resolve Supplies Zoom Lenses for NASA Testing

With 'ribbons' of graphene, width matters

Even geckos can lose their grip




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.