. 24/7 Space News .
Meteorite Find Supports Theory On Supernova Role In Solar System Creation

The Eagle Nebula, as photographed by the Hubble Space Telescope. This famous photo, often known as "The Pillars of Creation," shows giant nebular clouds being evaporated by the ferocious energy of massive stars, exposing emerging solar systems, much like our own. Credit: NASA/HST/Jeff Hester and Paul Scowen.
Tempe AZ (SPX) Jan 25, 2005
Clear evidence in a Chinese meteorite for the past presence of chlorine-36, a short-lived radioactive isotope, lends further support to the controversial concept that a nearby supernova blast was involved in the formation of our solar system, according to a report forthcoming in the February 1 issue of the Proceedings of the National Academy of Sciences.

Known as the Ningqiang carbonaceous chondrite, the primitive meteorite is a space relic that formed shortly after the solar system's creation. It contains pockets of still older materials or "inclusions" that contain that contain calcium, aluminum and sodalite, a chlorine-rich mineral.

A Chinese-American team of scientists including Yangting Lin, Ziyuan Ouyang and Daode Wang from the Chinese Academy of Sciences, and Yunbin Guan and Laurie Leshin from Arizona State University found the rare isotope sulfur-36 in association with the sodalite.

Though it can be formed in various ways, sulfur-36 is a natural decay product of chlorine-36 and its association with the chlorine in the sodalite is thus strong evidence for the past presence of chlorine-36, which has a half-life of only 300,000 years, in the early solar system.

The solar system's chlorine-36 could have formed in two different ways � either in the explosion of a supernova or in the irradiation of a nebular cloud near the forming Sun. The irradiation explanation is unlikely in this case, however, since the mineral the chlorine-36 was discovered in must have formed a significant distance from the sun.

"There is no ancient live chlorine-36 in the solar system now," said Leshin, who is director of ASU's Center for Meteorite Studies. "But this is direct evidence that it was here in the early solar system.

"We have now discovered the first solid evidence for two different short-lived radionuclides in the GeoSIMS Lab at ASU � iron-60 and chlorine-36 - and both of them provide strong evidence for where the solar system's short-lived radionuclides came from.

"It's producing a really strong argument that these radionuclides were produced in a supernova that exploded near the forming solar system and seeded the solar system with these isotopes."

In a "Perspectives" article in the journal Science last spring, Leshin and others argued that the presence of iron-60 was evidence that the solar system formed as a result of violent star-creation processes in a dense nebula rife with short-lived, high-mass stars and supernovas � a very different creation story than the traditional view that the solar system formed from a slowly condensing molecular cloud. (To see the release on the Science paper, see http://www.asu.edu/asunews/research/sun_earth_creation.htm )

Leshin points out that the current paper is part of a growing collaboration between space sciences at ASU and the Chinese science community, in this case being driven by Guan, a native of China, and manager of the ASU GeoSIMS Lab.

"Lin, the first author on this paper, was a visiting fellow in our lab for six months. We've published several papers on meteorites with groups in China � it's a very fruitful relationship," she said.

Related Links
Arizona State University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Supernovae Bring Majestic Sparkle To A Galaxy Far Far Away
Garching, Germany (SPX) Dec 02, 2004
Images of beautiful galaxies, and in particular of spiral brethren of our own Milky Way, leaves no-one unmoved. Astronomers at Paranal Observatory used the versatile VIMOS instrument on the Very Large Telescope to photograph two magnificent examples of such "island universes", both of which are seen in a southern constellation with an animal name.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.