. 24/7 Space News .
How to Build A Big Star

New observations by the Submillimeter Array show that massive stars much larger than the Sun form by accretion, the same process that formed our Sun. A competing theory suggested that massive stars form when smaller protostars merge to form a single giant star. Credit: Christine Pulliam (CfA).
Cambridge MA (SPX) Sep 01, 2005
The most massive stars in our galaxy weigh as much as 100 small stars like the Sun. How do such monsters form? Do they grow rapidly by swallowing smaller protostars within crowded star-forming regions?

Some astronomers thought so, but a new discovery suggests instead that massive stars develop through the gravitational collapse of a dense core in an interstellar gas cloud via processes similar to the formation of low mass stars.

"In the past, theorists have had trouble modeling the formation of high-mass stars and there has been an ongoing debate between the merger versus the accretion scenarios." said astronomer Nimesh Patel of the Harvard-Smithsonian Center for Astrophysics (CfA).

"We've found a clear example of an accretion disk around a high-mass protostar, which supports the latter while providing important observational constraints to the theoretical models."

Patel and his colleagues studied a young protostar 15 times more massive than the Sun, located more than 2,000 light-years away in the constellation Cepheus. They discovered a flattened disk of material orbiting the protostar. The disk contains 1 to 8 times as much gas as the Sun and extends outward for more than 30 billion miles - eight times farther than Pluto's orbit.

The existence of this disk provides clear evidence of gravitational collapse, the same gradual process that built the Sun. A disk forms when a spinning gas cloud contracts, growing denser and more compact. The angular momentum of the spinning material forces it into a disk shape. The planets in our solar system formed from such a disk 4.5 billion years ago.

Evidence in favor of high-mass accretion has been elusive since massive stars are rare and evolve quickly, making them tough to find. Patel and his colleagues solved this problem using the Submillimeter Array (SMA) telescope in Hawaii, which offers much sharper and highly sensitive imaging capabilities compared to single-dish submillimeter telescopes.

SMA is currently a unique instrument that makes such studies possible by allowing astronomers to directly image the dust emission at submillimeter wavelengths and also to detect emission from highly excited molecular gas.

The team detected both molecular gas and dust in a flattened structure surrounding the massive protostar HW2 within the Cepheus A star formation region. SMA data also showed a velocity shift due to rotation, supporting the interpretation that the structure is a gravitationally bound disk.

Combined with radio observations showing a bipolar jet of ionized gas, a type of outflow often observed in association with low-mass protostars, these results support theoretical models of high-mass star formation via disk accretion rather than by the merging of several low-mass protostars.

"Merging low-mass protostars wouldn't form a circumstellar disk and a bipolar jet," said co-author Salvador Curiel of the National Autonomous University of Mexico (UNAM), who is on sabbatical leave at CfA. "Even if they had circumstellar disks and outflows before the merger, those features would be destroyed during the merger."

The team plans more detailed observations using the SMA and the National Radio Astronomy Observatory's Very Large Array, which initially detected the bipolar jet.

The researchers, in addition to Patel, Ho, and Curiel, are: P. T. Ho, T. K. Sridharan, Q. Zhang, T. R. Hunter and J. M. Moran, of CfA; Jose M. Torrelles, Institute for Space Studies of Catalonia (IEEC)-Spanish Research Council (CSIC), Spain; and J. F. Gomez and G. Anglada, Instituto de Astrofisica de Andalucia (CSIC), Spain.

This research is being reported in the September 1, 2005, issue of Nature.

The SMA is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and is funded by the Smithsonian Institution and the Academia Sinica.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Solar System Forensics
Moffett Field CA (SPX) Aug 18, 2005
From chemical fingerprints preserved in primitive meteorites, scientists at UCSD have determined that the collapsing gas cloud that eventually became our sun was glowing brightly during the formation of the first material in the solar system more than 4.5 billion years ago.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.