. 24/7 Space News .
Probable Pathways For Chemical Evolution In Space

Diagram of the 10-atom molecule propanal and the 8-atom molecule propenal.
Green Bank WV (SPX) Jun 22, 2004
A team of scientists using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered two new molecules in an interstellar cloud near the center of the Milky Way Galaxy. This discovery is the GBT's first detection of new molecules, and is already helping astronomers better understand the complex processes by which large molecules form in space.

The 8-atom molecule propenal and the 10-atom molecule propanal were detected in a large cloud of gas and dust some 26,000 light-years away in an area known as Sagittarius B2. Such clouds, often many light-years across, are the raw material from which new stars are formed.

"Though very rarefied by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds-of-thousands or millions of years," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, Md. "Over time, more and more complex molecules can be formed in these clouds. At present, however, there is no accepted theory addressing how interstellar molecules containing more than 5 atoms are formed."

So far, about 130 different molecules have been discovered in interstellar clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. Each time a new molecule is discovered, it helps to constrain the formation chemistry and the nature of interstellar dust grains, which are believed to be the formation sites of most complex interstellar molecules.

Hollis collaborated with Anthony Remijan, also of NASA Goddard; Frank J. Lovas of the National Institute of Standards and Technology in Gaithersburg, Md.; Harald Mollendal of the University of Oslo, Norway; and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va. Their results were accepted for publication in the Astrophysical Journal Letters.

In the GBT experiment, three aldehyde molecules were observed and appear to be related by simple hydrogen addition reactions, which probably occur on the surface of interstellar grains. An aldehyde is a molecule that contains the aldehyde group (CHO): a carbon atom singly bonded to a hydrogen atom and double-bonded to an oxygen atom; the remaining bond on that same carbon atom bonds to the rest of the molecule.

Starting with previously reported propynal (HC2CHO), propenal (CH2CHCHO) is formed by adding two hydrogen atoms. By the same process propanal (CH3CH2CHO) is formed from propenal.

After these molecules are formed on interstellar dust grains, they may be ejected as a diffuse gas. If enough molecules accumulate in the gas, they can be detected with a radio telescope. As the molecules rotate end-for-end, they change from one rotational energy state to another, emitting radio waves at precise frequencies.

The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified the two new aldehydes by detecting a number of frequencies of radio emission in what is termed the K-band region (18 to 26 GHz) of the electromagnetic spectrum.

"Interstellar molecules are identified by means of the frequencies that are unique to the rotational spectrum of each molecule," said Lovas. "These are either directly measured in the laboratory or calculated from the measured data. In this case we used the calculated spectral frequencies based on an analysis of the literature data."

Complex molecules in space are of interest for many reasons, including their possible connection to the formation of biologically significant molecules on the early Earth. Complex molecules might have formed on the early Earth, or they might have first formed in interstellar clouds and been transported to the surface of the Earth.

Molecules with the aldehyde group are particularly interesting since several biologically significant molecules, including a family of sugar molecules, are aldehydes.

"The GBT can be used to fully explore the possibility that a significant amount of prebiotic chemistry may occur in space long before it occurs on a newly formed planet," said Remijan. "Comets form from interstellar clouds and incessantly bombard a newly formed planet early in its history. Craters on our Moon attest to this. Thus, comets may be the delivery vehicles for organic molecules necessary for life to begin on a new planet."

Laboratory experiments also demonstrate that atomic addition reactions -- similar to those assumed to occur in interstellar clouds -- play a role in synthesizing complex molecules by subjecting ices containing simpler molecules such as water, carbon dioxide, and methanol to ionizing radiation dosages. Thus, laboratory experiments can now be devised with various ice components to attempt production of the aldehydes observed with the GBT.

"The detection of the two new aldehydes, which are related by a common chemical pathway called hydrogen addition, demonstrates that evolution to more complex species occurs routinely in interstellar clouds and that a relatively simple mechanism may build large molecules out of smaller ones. The GBT is now a key instrument in exploring chemical evolution in space," said Hollis.

The GBT is the world's largest fully steerable radio telescope; it is operated by the NRAO.

"The large diameter and high precision of the GBT allowed us to study small interstellar clouds that can absorb the radiation from a bright, background source. The sensitivity and flexibility of the telescope gave us an important new tool for the study of complex interstellar molecules," said Jewell.

Related Links
Green Bank Telescope
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Astronomers Detect Molecular Nitrogen Outside Solar System
Greenbelt MD (SPX) Jun 10, 2004
NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, has for the first time detected molecular nitrogen in interstellar space, giving researchers their first detailed look into how the universe's fifth most-abundant element behaves in an environment outside the Solar System.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.