. 24/7 Space News .
Canadian Space Telescope Detects Puzzling Brightness Variations In Dying Star

Full MOST lightcurve obtained for the subdwarf B star PG 0101+039 over 16.9 days starting 28 September 2004. (See larger image.) Each data point corresponds to the relative brightness of the star at that particular time. The top row covers the first 24-hour period of the run, and the data for subsequent days have been shifted downwards arbitrarily for visualisation purposes. This material was presented to the Canadian Astronomical Society meeting in Montreal, QC on May 15, 2005. Credit: Universite de Montreal and MOST.
Montreal QC (SPX) May 17, 2005
Astronomers presented on Sunday new results from the Canadian MOST ('Microvariability and Oscillations of Stars') satellite at the Canadian Astronomical Society Meeting held at the Universite de Montreal.

Suzanna Randall and Prof. Gilles Fontaine, from the Universite de Montreal, announced the detection of brightness variations ("pulsations") in the small ageing star PG 0101+039 in collaboration with Prof. Jaymie Matthews, Jason Rowe and Dr. Rainer Kuschnig (University of British Columbia) and the international MOST Science Team.

The confirmed variability of this star is of particular interest because it violates predictions of stellar pulsation and will force a thorough reconsideration of current theory.

PG 0101+039 is a subdwarf B star located in the constellation of Andromeda at a distance of around 1000 light-years.

Its brightness fluctuations were observed for nearly 17 consecutive days starting on 28 September 2004 with MOST, Canada's first orbiting space telescope.

Around 250 times less bright than the dimmest star visible with the naked eye, this star is relatively faint for the 15-cm (5.9-inch) telescope designed primarily to look at much brighter objects.

The fact that minuscule luminosity changes of less than 1 % of the star's normal brightness were nevertheless detected constitutes a significant achievement and holds great promise for the future space-based exploration of subdwarf B stars.

Subdwarf B stars are around 5 times hotter than our Sun, and so dense that - at comparable masses - they are about 10 times smaller. They are rather abundant in the night-time sky and dominate the population of bright blue stars.

While astronomers know that they are in the final stages of their long lives, the details surrounding their evolution remain somewhat mysterious.

Following the discovery of pulsating subdwarf B stars, it is now hoped that evolutionary theories can be constrained through the use of a technique called asteroseismology.

Analogous to seismology on Earth, asteroseismology is essentially the study of 'starquakes', seeking to match the brightness variations observed in a star to those predicted for a particular model and thus determine its temperature, size and chemical composition.

"Asteroseismology lets us probe deep inside stars to reveal their internal composition, an aspect that normally remains hidden even from the world's largest telescopes" explained Suzanna Randall, an astronomy PhD student at the Universite de Montreal,

"The asteroseismological potential of pulsating subdwarf B stars in particular may hold the key to a more mature comprehension of the evolution, life and death of stars. "While the detection of oscillations in PG 0101+039 challenges our current models, it will ultimately lead to a better understanding of these valuable objects."

Related Links
University of British Columbia
Universite de Montreal
Search SpaceDaily
Subscribe To SpaceDaily Express

Discovery Of The Most Metal-Deficient Star Ever Found
Hamburg, Germany (SPX) Apr 14, 2005
An international team of astronomers has reported the discovery of a star, HE1327-2326, which sets a new record for being the most heavy element-deficient star ever found.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.