. 24/7 Space News .
Titan: A Moon With Atmosphere - Part I

These false color images show evidence of changing weather patterns in the skies over Titan's southern hemisphere. Cassini's visual and infrared mapping spectrometer took the images during two recent flybys. In the first image (left), taken Oct. 26, 2004, Titan's skies are cloud-free except for a patch of clouds over the south pole near the bottom of the image. In contrast the image at right, taken Dec. 13, 2004, shows extensive patches of clouds formed over temperate latitudes. Credit: University of Arizona/JPL/NASA.
for Astrobiology Magazine
A talk by Chris McKay
Moffett Field CA (SPX) Oct 28, 2005
Titan is the only moon of Saturn that you can see clearly through a small telescope. Jupiter has four big moons, the Galilean moons. Saturn only has one, Titan, and it's much larger than all the others. Saturn has a lot of moons, but from my point of view there's really only one: Titan. It's the one with the atmosphere.

When Voyager flew by Titan in 1980, it was a little bit of a disappointment to the geologists. They're used to flying by worlds and looking down and looking at surface features like craters and channels and volcanoes. But when they flew by Titan, it looked like the L.A. basin: just smog covering it, orange haze.

They couldn't see a thing. But from an atmospheric science point of view, that's great. It's the only moon with an atmosphere, and the atmosphere has organic smog in it. So for understanding planets and life and organic chemistry, Titan is a big hit.

In many ways Titan is similar to the Earth. It's about the size of our moon, so its gravity is less than Earth's, one-seventh. But it's the only world in the solar system that's got an atmosphere that has anywhere near the atmospheric pressure on Earth. Mars has 100 times less than Earth's pressure, and Venus has 100 times more. Those are our so-called "sister" planets - and they're 100 times different in either direction. Titan's atmosphere is only one and a half times as thick as Earth's.

It's also the only atmosphere in the solar system that, like Earth's, is dominated by nitrogen. And that's actually a big mystery - both on Earth and on Titan. Why is there so much nitrogen? If you look at Venus and Mars, the amount of nitrogen is very small, only a few percent. On Earth it's 80 percent. On Titan it's 95 percent.

The interesting thing about Titan's atmosphere is not just that it's made out of nitrogen, but it has all these other compounds in it, all produced from methane and nitrogen photochemistry. Sunlight is hitting the methane molecules, breaking it up , and then they're reacting to form all of these compounds: benzene, acetylene, propane and so on.

In fact, I was telling somebody the other day, there ought to be a sign there that says, "This world is known to the State of California to contain chemicals that cause cancer." And these are just the ones that we can detect. We know there are a lot more organic compounds there.

The question is, Why does Titan have an atmosphere and why is it so unusual? The natural comparison is between Titan and the Galilean moons of Jupiter - Ganymede, Callisto and Europa, in particular. Why does Titan haven an atmosphere and these moons that are roughly the same size and the same composition have no atmosphere at all? Not just a thin atmosphere, they have none; zero; 10-15 atmospheric pressure. Titan has 1.5 times Earth's atmospheric pressure.

We don't really know why. That is one of the main things that is going to come from the probe. A clue to where Titan's atmosphere came from will be in the noble gases. If you look at our atmosphere, the presence of trace amounts of argon, krypton, xenon and neon tell us how the volatiles that came to Earth got here. They came in comets, where these gases, as well as nitrogen and oxygen, were trapped. Our thought was that if Titan had these noble gases, too, that would say that its atmosphere was primordial and it came in with comets. And then there'd be a question: Why didn't Ganymede and Callisto also form atmospheres like that?

But the probe results so far seem to indicate that there are none of these trace gases there. The only noble gas we've seen on Titan is argon-40, which is the radioactive decay product of krypton-40. It's not a gas that comes in with comets, it's a gas that's produced by the decay of potassium inside the interior of the planet and then it outgases. The result seems to be that Titan's atmosphere is not primordial, the way Earth, Mars and Venus's are, but it's a secondary atmosphere that's come from outgassing from the interior.

So Titan seems to have condensed with an interior which had nitrogen and methane in it, and then it's outgassed those. The nitrogen and methane probably have come from the decomposition products of something in Titan's interior. That's as far as we've gotten in terms of understanding. The further analysis of the probe results, in particular things like nitrogen isotopes, and the carbon isotopes in the methane, might help us unravel that. But that's going to take a couple more years of work.

We also think that our moon also formed without an atmosphere, but in a very different way. The Earth formed by the accretion of a variety of different rocks, along with asteroids and comets. Some of those asteroids and comets had water and air and other things in them. So Earth formed with a complement of volatiles, light molecules.

We think that the moon formed by the impact of a Mars-sized object smashing into the Earth and literally knocking a big chunk of the Earth's mantle into space, as a liquid slab. That liquid slab of Earth's crustal rocks then condensed to form the moon. So the material from which the moon formed did not have any volatiles - ever. It was formed out of molten rock, condensing in Earth orbit. It never had the same endowment of material that Mars, Venus and Earth had when they formed. It didn't form the way those planets did.

That was one of the major scientific results of Apollo, this understanding of the relationship between the Earth and the moon. Before Apollo, one of the theories was that the moon formed as a separate planet, like Mars or Venus or Earth. But then the moon should have formed with water and things like Earth has, although less of them.

But Apollo, particularly the oxygen-isotope data from Apollo, showed that the moon was formed basically out of crustal rocks from the Earth. It took people a while to figure out how that happened. The consensus theory now is the moon formed by an impact that knocked off crustal rock that condensed to form the moon. So it was born without any volatiles. It is dry, dry, dry.

Now, even if the moon had volatiles, it wouldn't hold them as well as Titan does. It's a lot warmer, because it's 10 times closer to the sun. So any atmosphere it had, it would lose it faster.

Titan is losing its atmosphere, too. We think that there must be mechanisms to recharge it. Cryovolcanism may be one such mechanism. So Titan's atmosphere may be a bit misleading. People think it's been there forever; it's a stable, thick atmosphere. But maybe not. It may be, in fact, losing it every 10 million years - it's just replenishing it. That's a mystery that we really don't know the answer to yet. It's one of the things that we're trying to work on from the probe results.

related report
Cassini To View Huygens Landing Site
Pasadena CA (JPL) Oct 28 - The Cassini spacecraft will make another flyby of Titan on 28 October allowing it to image the Huygens landing site.

This map below shows Titan's surface and illustrates the regions that will be viewed by Cassini's imaging cameras during the spacecraft's close flyby. At closest approach, the spacecraft is expected to pass approximately 1400 kilometers above the moon's surface.

The colored lines delineate the regions that will be imaged at differing resolutions.

The highest resolution imaging coverage during the flyby will be of the eastern portion of the dark region called Shangri-la and the boundary between Shangri-la and bright Xanadu.

Several of the major "islands" in eastern Shangri-la will be featured, including faculae (or bright spots) which have the provisional names Kerguelen, Vis, Crete and Tortola. These bright features on Titan are named for island features from Earth.

The map shows only brightness variations on Titan's surface (the illumination is such that there are no shadows and no shading due to topographic variations). Previous observations indicate that, due to Titan's thick, hazy atmosphere, the sizes of surface features that can be resolved are a few to five times larger than the actual pixel scale labeled on the map.

The images for this global map were obtained using a narrow band filter centered at 938 nanometers - a near-infrared wavelength at which light can penetrate Titan's atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details.

Science Activities

The instruments on Cassini will perform the following activities during the flyby:

  • RADAR will perform SAR imaging of the dark terrain west of Xanadu. This area includes the Huygens landing site.
  • The Ion and Neutral Mass Spectrometer (INMS) will obtain data regarding atmospheric and ionospheric composition and thermal structure.
  • The Magnetospheric and Plasma Science (MAPS) teams, in general, will continue observations of Titan's interaction with Saturn's magnetosphere � including the period within one hour of Titan closest approach.
  • The Radio and Plasma Wave Spectrometer (RPWS) will look for lightning and other radio emissions, perform a characterization of the plasma wave spectrum, and search for evidence of pickup ions.
  • The Composite Infrared Spectrometer (CIRS) will obtain vertical profiles of temperatures, HCN, and C2H2 in Titan's tropopause, stratosphere, and on the surface. CIRS will also obtain information on trace constituents in the stratosphere.
  • The Imaging Science Subsystem (ISS) will monitor Titan for surface and atmospheric changes, including cloud motion. Some high-resolution imaging also will occur.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Stormy Weather: Titan's Engimatic Cloud Band Is Convective
Tuscon AZ (SPX) Oct 21, 2005
University of Arizona scientists say that the peculiar clouds at middle latitudes in Titan's southern hemisphere may form in the same way as distinct bands of clouds form at Earth's equator.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.