. 24/7 Space News .
Astronauts To Get NanoSensors To Monitor Radiation And Infection

nice and clean with a radiation bath
Ann Arbor - Jul 11, 2002
Along with space suits, freeze-dried food and barf bags, tomorrow's astronauts may travel with nanomolecular devices inside their white blood cells to detect early signs of damage from dangerous radiation or infection.

The National Aeronautics and Space Administration (NASA) is investing $2 million to develop this "Star Trek" technology at the University of Michigan Medical School's Center for Biologic Nanotechnology. The three-year research grant is the largest the Medical School has ever received from NASA, according to James R. Baker, Jr., M.D., who will direct the project.

"Our goal is to develop a non-invasive system that, when placed inside the blood cells of astronauts, will monitor continuously for radiation exposure or infectious agents," says Baker, the Ruth Dow Doan Professor of Nanotechnology, a U-M professor of internal medicine and the center's director.

"Radiation-induced illness is a serious concern in space travel," says Baker. "Radiation changes the flow of calcium ions within white blood cells and eventually triggers irreversible cell death. Even if individual incidences of exposure are within acceptable limits, the cumulative effect of radiation can be toxic to cells. So, it's important to monitor continuously for early signs of damage."

U-M scientists will use expertise and technology acquired during an ongoing nanotechnology research study funded by the National Cancer Institute. In this project, U-M researchers are developing intra-cellular devices to sense pre-malignant and cancerous changes inside living cells.

Created from synthetic polymers called dendrimers, the devices are fabricated layer-by-layer into spheres with a diameter of less than five nanometers. A nanometer is one-billionth of a meter. One million nanometers are equal to the diameter of a pinhead.

Because the nanosensors are so small, Baker says they pass easily through membranes into white blood cells called lymphocytes, where they are in a perfect position to detect the first signs of biochemical changes from radiation.

Nanosensors will avoid problems associated with current much-larger implantable sensors, which can cause inflammation; and eliminate the need to draw and test blood samples. U-M scientists hope the devices can be administered transdermally -- or through the skin -- every few weeks, avoiding the need for injections or IVs during space missions.

"We can attach fluorescent tags to dendrimers, which glow in the presence of proteins associated with cell death," Baker explains.

"Our plan is to develop a retinal-scanning device with a laser capable of detecting fluorescence from lymphocytes as they pass one-by-one through narrow capillaries in the back of the eye. If we can incorporate the tagged sensors into enough lymphocytes, a 15-second scan should be sufficient to detect radiation-induced cell damage."

If the first phase of research with lymphocytes is successful, Baker plans to develop nanosensors targeted at other immune system cells to monitor protein markers of infection. U-M scientists will work initially with cell cultures, but plan later testing of the nanosensor technology in research animals.

The NASA-funded research project will require the combined efforts of U-M scientists from many different disciplines and academic units within the university. In addition to Baker, senior members of the research team are Theodore B. Norris, Ph.D., professor of electrical engineering and computer science in the U-M College of Engineering; Bradford G. Orr, Ph.D., professor of physics in the College of Literature, Science, and the Arts; and Felix de la Iglesia, M.D., adjunct professor of pathology in the Medical School and an adjunct professor of environmental health sciences in the School of Public Health.

Related Links
Center for Biologic Nanotechnology at University of Michigan
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Canadian Experiment Keeps Astronauts Safe

Stunning Desktop Available
  • 800X600     1024X768
  • 640x480     1280X1024
  • St. Hubert - Oct 22, 2001
    The Canadian Space Agency (CSA) today announced Canada's latest space life science initiative, the Extra-Vehicular Activity Radiation Monitor (EVARM) experiment. Developed by Ottawa's Thomson Nielsen with funding from the CSA, EVARM will be used to measure the amount of radiation that astronauts receive while on a spacewalk, or extravehicular activity (EVA).



    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














    The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.