. 24/7 Space News .
NASA Confirms North Pole Ozone Hole Trigger

These are actual satellite images of ozone loss from 1984 and 1997, showing the difference between years where long waves are strong and weak.

The colors represent total ozone amounts with purple and blue representing the low end and orange and red representing the high end. The black lines represent the average February long-wave wave structure. 1984 was an active year with strong planetary waves and the ozone levels are relatively high at the pole. 1997 was an extremely quiet year for long waves and the ozone levels are relatively low at the pole (as seen in blue and purple).

These images were taken by the Total Ozone Mapping Spectrometer (TOMS). TOMS was launched onboard an Earth Probe Satellite TOMS/EP in July 1996. TOMS/EP is continuing NASA's long term daily mapping of the global distribution of the Earth's atmospheric ozone. This NASA developed instrument, which measures ozone indirectly by monitoring ultraviolet light, has mapped in detail the Antarctic "ozone hole," which forms September through November of each year, and the distribution of ozone over the globe.

Greenbelt - Sept. 17, 2001
NASA researchers using 22 years of satellite-derived data have confirmed a theory that the strength of "long waves," bands of atmospheric energy that circle the earth, regulate the temperatures in the upper atmosphere of the Arctic, and play a role in controlling ozone losses in the stratosphere. These findings will also help scientists predict stratospheric ozone loss in the future.

These long waves affect the atmospheric circulation in the Arctic by strengthening it and warming temperatures, or weakening it and cooling temperatures. Colder temperatures cause polar clouds to form, which lead to chemical reactions that affect the chemical form of chlorine in the stratosphere.

In certain chemical forms, chlorine can deplete the ozone layer. One theory is that greenhouse gases may be responsible for decreasing the number of long waves that enter the stratosphere, which then thins the ozone layer.

Just as the weather at the Earth's surface varies a lot from one year to the next, so can the weather in the stratosphere. For instance, there were some years like 1984, in which it didn't get cold enough in the Arctic stratosphere for significant ozone loss to occur.

"During that year, we saw stronger and more frequent waves around the world, that acted as the fuel to a heat engine in the Arctic, and kept the polar stratosphere from becoming cold enough for great ozone losses," said Paul Newman, lead author of the study and an atmospheric scientist at NASA's Goddard Space Flight Center, in Greenbelt, Md.

"Other years, like 1997, weaker, and less frequent waves reduced the effectiveness of the Arctic heat engine and cooled the stratosphere, making conditions just right for ozone destruction," Newman said. The paper appears in the September 16 issue of Journal of Geophysical Research-Atmospheres.

The temperature of the lower level of the stratosphere over the poles is also controlled by the change in seasons from winter to spring, and by gases such as ozone, water vapor and carbon dioxide.

A long wave or planetary wave is like a band of energy, thousands of miles in length that flows eastward in the middle latitudes of the upper atmosphere, and circles the world. It resembles a series of ocean waves with ridges (the high points) and troughs (the low points). Typically, at any given time, there are between one and three of these waves looping around the Earth.

These long waves move up from the lower atmosphere (troposphere) into the stratosphere, where they dissipate. When these waves break up in the upper atmosphere they produce a warming of the polar region. So, when more waves are present to break apart, the stratosphere becomes warmer. When fewer waves rise up and dissipate, the stratosphere cools, and the more ozone loss occurs.

Weaker "long waves" over the course of the Northern Hemisphere's winter generate colder Arctic upper air temperatures during spring. By knowing the cause of colder temperatures, scientists can better predict what will happen to the ozone layer.

The temperature of the polar lower stratosphere during March is the key in understanding polar ozone losses - and the temperature at that time is usually driven by the strength and duration of "planetary waves" spreading into the stratosphere.

This discovery provides a key test of climate models that are used to predict polar ozone levels. "This then lends itself to adjusting climate models, and increasing their accuracy, which means scientists will have a better way to predict climate change in the future," Newman said.

The stratosphere is an atmospheric layer about 6 to 30 miles above the Earth's surface where the ozone layer is found. The ozone layer prevents the sun's harmful ultra-violet radiation from reaching the Earth's surface. Ultra-violet radiation is a primary cause of skin cancer. Without upper-level ozone, life on Earth would be non-existent.

The research used temperature measurements of the stratosphere from the Upper Atmospheric Research Satellite (UARS).

Related Links
More at Goddard
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Wetter Upper Atmosphere May Delay Global Ozone Recovery
Greenbelt - April 23, 2001
NASA research has shown that increasing water-vapor in the stratosphere, which results partially from greenhouse gases, may delay ozone recovery and increase the rate of climate change.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.