![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
UC Davis researchers in nanotechnology, chemistry and biology now have access to one of the most advanced microscopes of its type in the world. The new Spectral Imaging Facility, opened this fall, is a combination of an atomic force microscope and a laser scanning confocal microscope, the first commercial machine of its kind. The atomic force microscope was built by Asylum Research of Santa Barbara and the confocal microscope system by Olympus America Inc. Integration of the two systems was carried out by Asylum Research with the participation of scientists led by Gang-yu Liu, professor of chemistry at UC Davis. Acquisition of the instrument was funded by a grant of $354,000 from the National Science Foundation, matched by $151,714 from UC Davis. The confocal microscope allows three-dimensional imaging of samples, such as cells, and picks up structures tagged with fluorescent dyes. Instead of cutting a sample into thin slices, a researcher can focus through the entire sample and resolve it in three dimensions. The atomic force microscope uses an extremely fine tip to run over the surface of a sample and "see" extremely fine detail down to an atomic scale. "It allows you to see both the detail and the bulk," Liu said. For example, biologists could use fluorescent tags to look at structures inside a cell and link them to very small changes on the cell membrane. Materials scientists could use it to get information about the bulk structure of a material and to measure the arrangement of atoms at the surface. The tip of the atomic force microscope can also be used as a probe to nudge cells, or place atoms or molecules into new, microscopic patterns. The project includes 24 UC Davis faculty from the departments of Chemistry and of Physics; the colleges of Engineering, Agricultural and Environmental Sciences, and Biological Sciences; the School of Medicine; and from the Lawrence Livermore National Laboratory. Related Links UC Davis SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() Researchers have known for some time that a long, fibrous coil grown by a single-cell protozoan is, gram for gram, more powerful than a car engine. Now, researchers at Whitehead Institute�together with colleagues at MIT, Marine Biological Laboratory in Woods Hole, MA, and University of Illinois, Chicago - have found that this coil is far stronger than previously thought. In addition, the researchers have discovered clues into the mechanism behind this microscopic powerhouse.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |