. 24/7 Space News .
Penn Researchers Transform Properties Of Matter With Tunable Quantum Dots

Image of quantum dots. "Essentially, we're forming artificial solids from artificial atoms � about 10 times larger than real atoms � whose properties we can fine tune on the quantum level," said Drndic, an assistant professor in Penn's Department of Physics and Astronomy.
University Park PA (SPX) Oct 05, 2005
Researchers at the University of Pennsylvania may not have turned lead into gold as alchemists once sought to do, but they did turn lead and selenium nanocrystals into solids with remarkable physical properties.

In the October 5 edition of Physical Review Letters, online now, physicists Hugo E. Romero and Marija Drndic describe how they developed am artificial solid that can be transformed from an insulator to a semiconductor.

The Penn physicists are among many modern researchers who have been experimenting with a different way of transforming matter through artificial solids, formed from closely packed nanoscale crystals, also called "quantum dots."

"Essentially, we're forming artificial solids from artificial atoms � about 10 times larger than real atoms � whose properties we can fine tune on the quantum level," said Drndic, an assistant professor in Penn's Department of Physics and Astronomy.

"Artificial solids are expected to revolutionize the fabrication of electronic devices in the near future, but now we are only beginning to understand their fundamental behavior."

Artificial solids, in general, are constructed by specifically assembling a number of nanocrystals, each composed of only a few thousand atoms, into a closely packed and well-ordered lattice. Previous researchers have demonstrated that quantum dots can be manipulated to change their physical properties, particularly their optical properties.

In fact, the blue laser, which will soon be put into use into commercial products, was a result of early research in changing the colors of quantum dots.

"Many of the physical parameters of these crystals, such as their composition, particle size and interparticle coupling, represent knobs that can be individually controlled at nanometer scales," Drndic said.

"Variation of any of these parameters translates directly into either subtle or dramatic changes in the collective electronic, optical and magnetic response of the crystal. In this case were able to adjust its electrical properties."

In their study, Drndic and her colleagues looked at the ability of artificial solids to transport electrons. They demonstrated that, by controlling the coupling of artificial atoms within the crystal, they could increase the electrical conductivity of the entire crystal.

According to the researchers, this system promises the possibility of designing artificial solids that can be switched through a variety of electronic phase transitions, with little influence from the local environment. Their findings represent a key step towards the fabrication of functional nanocrystal-based devices and circuits.

Quantum dots are more than simply analogous to individual atoms; they also demonstrate quantum effects, like atoms, but on a larger scale. As a tool for research, quantum dots make it possible for physicists to measure, firsthand, some things only described in theory.

"It is this versatility in both experiment and theory that can potentially turn these quantum dot solids into model systems for achieving a general understanding of the electronic structure of solids," Drndic said. "Not only are we making strides in creating a future generation of electronics, but in doing so we are also getting a deeper understanding of the fundamental properties of matter."

Related Links
University of Pennsylvania
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

World's Smallest Universal Material Testing System
Evanston IL (SPX) Sep 23, 2005
The design, development and manufacturing of revolutionary products such as the automobile, airplane and computer owe a great deal of their success to the large-scale material testing systems (MTS) that have provided engineers and designers with a fundamental understanding of the mechanical behavior of various materials and structures.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.