. 24/7 Space News .
Penn Researchers Introduce A New Nanotube-Laced Gel, Create New Means Of Aligning Nanotubes

illustration only
Philadelphia - Mar 04, 2004
Researchers at the University of Pennsylvania have devised a new method for aligning isolated single wall carbon nanotubes and, in the process, have created a new kind of material with liquid crystal-like properties, which they call nematic nanotube gels.

The gels could potentially serve as sensors in complex fluids, where changes in local chemical environment, such as acidity or solvent quality, can lead to visible changes in the gel shape. The researchers describe their findings in the current issue of Physical Review Letters.

Single wall carbon nanotubes have astounded researchers with their remarkable strength and their ability to conduct heat and electricity. For many of their potential applications, however, these nanotubes work best when they are aligned parallel to one another, without forming aggregates or bundles.

In solutions with low concentrations of single wall carbon nanotubes, the nanotubes are isotropic, or not oriented in a particular direction. If the concentration of the single wall carbon nanotubes is increased sufficiently, it becomes energetically favorable for the nanotubes to align. This is the nematic phase that many researchers have sought to create and utilize.

"Unfortunately, experience has shown that single wall carbon nanotubes tend to clump together or form three-dimensional networks in water at concentrations where theories otherwise predict they will form this nematic liquid crystal phase," said Arjun Yodh, senior author and a professor in Penn Department of Physics and Astronomy. "Our gels effectively increase the concentration of isolated single wall carbon nanotubes without allowing them to bundle up or form networks."

Yodh and his colleagues embedded isolated nanotubes coated by surfactant into a cross-linked polymer matrix, a gel. The volume of the gel is highly temperature dependent, and the researchers were able to compress it to a fraction of its original size by changing its temperature.

The gel network prevented the close contact between parallel nanotubes that produces bundling, and its compression produced concentrations of isolated nanotubes that favor nematic alignment. The condensed gel thus creates concentrations of isolated, aligned nanotubes that cannot be achieved when they are suspended in water.

Like liquid crystals, the resulting nanotube gels exhibit beautiful defect patterns revealed by polarized light transmission through the sample that correspond to the particular nanotube alignments. The topology of the defects are, in turn, coupled to the mechanical strains present in the gel.

The researchers are now exploring applications for both the technique and the properties of the nematic nanotube gels.

"Certainly we expect the mechanical, electrical and perhaps thermal properties of the resulting composites to differ from their unaligned counterparts," said Mohammad Islam, a Penn postdoctoral fellow and co-author of the study. "It might be possible to use local influx of particular chemicals to cause mechanical deformations in the gel. Similarly, external fields could interact with the nanotubes, which in turn would interact and deform the background polymer network."

Related Links
University of Pennsylvania
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Seamless Nanorings Could Be Nanoscale Sensors, Resonators Or Transducers
Atlanta - Feb 27, 2004
An article to be published in the February 27 issue of the journal Science introduces "nanorings" as the newest member of a growing family of nanometer-scale structures based on single crystals of zinc oxide, a semiconducting and piezoelectric material that has important technological applications.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.