. | . |
Ceramics Reinforced With Nanotubes
A ceramic material reinforced with carbon nanotubes has been made by materials scientists at UC Davis. The new material is far tougher than conventional ceramics, conducts electricity and can both conduct heat and act as a thermal barrier, depending on the orientation of the nanotubes. Ceramic materials are very hard and resistant to heat and chemical attack, making them useful for applications such as coating turbine blades, said Amiya Mukherjee, professor of chemical engineering and materials science at UC Davis, who leads the research group. But they are also very brittle. The researchers mixed powdered alumina (aluminum oxide) with 5 to 10 percent carbon nanotubes and a further 5 percent finely milled niobium. Carbon nanotubes are sheets of carbon atoms rolled up into tiny hollow cylinders. With diameters measured in nanometers -- billionths of an inch -- they have unusual structural and conducting properties. The researchers (postdoctoral scholar Guodong Zhan, graduate students Joshua Kuntz and Javier Garay, and Mukherjee) treated the mixture with an electrical pulse in a process called spark-plasma sintering. This process consolidates ceramic powders more quickly and at lower temperatures than conventional processes. The new material has up to five times the fracture toughness -- resistance to cracking under stress -- of conventional alumina. "It's a lot more forgiving under service application when you have a dynamic load," said Mukherjee. The material shows electrical conductivity ten trillion times greater than pure alumina, and seven times that of previous ceramics made with nanotubes. It also has interesting thermal properties, conducting heat in one direction, along the alignment of the nanotubes, but reflecting heat at right angles to the nanotubes, making it an attractive material for thermal barrier coatings, Mukerhjee said. Related Links University of California - Davis SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express New Chemical Process Can Separate, Manipulate Carbon Nanotubes Champaign - Sep 12, 2003 All single-walled-carbon nanotubes are not created equal. Instead, they form diverse assortments that vary markedly in features such as size and electrical properties.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |