. 24/7 Space News .
Explorers In Nanospace

a pretty picture of nanospace
Sydney - Apr 24, 2002
While astrophysicists are figuring out the challenges of travel through outer space, CSIRO materials researchers are tackling a problem at the opposite end of the size scale - moving molecules through nanospace.

A team of Australian and US scientists today announced a world advance in the use of membrane technology to filter and separate various gases and vapours.

The breakthrough has implications for many activities, ranging from water purification and environmental cleanup, to better fuels and petrochemicals, purer medicines and desalination of seawater for drinking.

A team from CSIRO, University of Texas at Austin, North Carolina State University and MTR, Menlo Park California, reports in the latest issue of Science (April 19) the discovery of a new type of nanoparticle-enhanced filter for separating compounds at the molecular level.

"Just as astrophysicists are exploring 'wormholes' in space-time through which people might one day be able to pass, we're looking at ways to create wormholes at the tiniest level, just millionths of a millimeter in size, in a filter medium so that we can control precisely what passes through and what doesn't," explains CSIRO's Dr Anita Hill.

The new filtration media are created by combining organic polymers normally used to make membrane filters with inorganic substances - in this case a mist of silica nanoparticles.

The team discovered that this combination gives the membrane a quite extraordinary ability to separate large organic molecules from the gases in which they might be floating.

This new class of organic/inorganic materials, known as nanocomposites, have already been shown to be remarkable for enhanced conductivity, being extremely tough, having valuable optical properties and acting as catalysts.

The US-Australian team has now demonstrated a new and potentially even more useful trait - the ability to filter gases and organic vapours at the molecular level.

"This is a diverse field affecting processes such as biomolecule purification, environmental remediation, seawater desalination and petroleum chemicals and fuel production," Dr Hill says.

"Traditionally, this sort of filtering has mostly been done by distillation, which is often very costly in terms of equipment and energy use.

"Membranes are attractive as filters because they are a low-cost, energy-efficient, green technology - but their uses for separating gases have so far been limited by the lack of the right sort of membranes to yield pure products, with high speed and low operating cost while remaining stable."

As a rule, the more selective a polymer is at extracting a pure gas, the less permeable it tends to be - and the more expensive it is to use.

The new nanoparticle-enhanced polymers promise to deliver both high filtering efficiency and high throughput, making them much more cost-efficient, she says.

While the work has so far only been demonstrated in laboratory and pilot-scale trials, further down the track she is confident it offers the prospects of greater efficiency to industries such as Australia's $2.6 billion natural gas export sector - or in the production of hydrogen, now seen by leading CSIRO scientists as Australia's primary energy source of the future.

Related Links
CSIRO Manufacturing Science & Technology
Search SpaceDaily
Subscribe To SpaceDaily Express

Microscopy Turning Nanoscopy
Munich - Apr 11, 2002
Max Planck researchers demonstrate a 15-fold increase in axial resolution in fluorescence 3-D light microscopy - the first breakthrough of optical focusing microscopy into the nanometer range

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.