. 24/7 Space News .

The Army�s Tactical High Energy Laser Advanced Concept Technology Demonstrator (THEL/ACTD) has successfully demonstrated its ability to detect, track, engage and destroy a Katyusha rocket armed with a live warhead. The rocket in flight was successfully intercepted and destroyed in field testing at the Army�s High Energy Laser Systems Test Facility, White Sands Missile Range, N.M.
World's First Ray Gun Shoots Down Missile
Redondo Beach - June 7, 2000 - TRW, the U.S. Army and the Israel Ministry of Defence (IMoD) have blazed a new trail in the history of defensive warfare by using the Army's Tactical High Energy Laser/Advanced Concept Technology Demonstrator (THEL/ACTD), the world's first high-energy laser weapon system designed for operational use, to shoot down a rocket carrying a live warhead.

The successful intercept and destruction of a Katyusha rocket occurred on June 6 at approximately 3:48 p.m. EDT at the Army's High Energy Laser Systems Test Facility (HELSTF), White Sands Missile Range, New Mexico.

The shoot-down was achieved during a high-power laser tracking test conducted as part of the ongoing THEL/ACTD integration process.

"We've just turned science fiction into reality," said Lt. Gen. John Costello, Commanding General, U.S. Army Space & Missile Defense Command.

"This compelling demonstration of THEL's defensive capabilities proves that directed energy weapon systems have the potential to play a significant role in defending U.S. national security interests worldwide."

"This shoot-down is an exciting and very important development for the people of Israel," said Major General Dr. Isaac Ben-Israel, Director of MAFAT, Israel Ministry of Defence.

"With this success, THEL/ACTD has taken the crucial first step to help protect the communities along our northern border against the kind of devastating rocket attacks we've suffered recently."

"The THEL/ACTD shoot-down is a watershed event for a truly revolutionary weapon," said Tim Hannemann, executive vice president and general manager, TRW Space & Electronics Group, the THEL/ACTD system prime contractor.

"It also provides a very positive opportunity for our customers to consider developing more mobile versions of THEL." Any future THEL developments would benefit from continued testing and performance evaluations of the THEL/ACTD's current subsystems, he added.

For this critical first test of THEL/ACTD's defensive capabilities, an armed Katyusha rocket was fired from a rocket launcher placed at a site in White Sands Missile Range.

Seconds later, the THEL/ACTD, located several miles away at HELSTF, detected the launch with its fire control radar, tracked the streaking rocket with its high precision pointer tracker system, then engaged the rocket with its high- energy chemical laser.

Within seconds, the 10-foot-long, 5-inch-diameter rocket exploded.

According to Hannemann, the THEL/ACTD shoot-down represents significant advancements in the maturity of engineering technologies used to design and build deployable directed energy weapon systems.

"In February 1996, as part of the Nautilus laser test program, TRW, the Army and the IMoD used the Mid Infrared Advanced Chemical Laser (MIRACL) and the SeaLite Beam Director installed at HELSTF to intercept and destroy a Katyusha rocket," he said.

"Those tests established high-energy laser lethality against short-range rocket threats, but we had to use a large facility-based laser and beam control system to perform the test." By contrast, he added, THEL/ACTD was designed and produced as a stand-alone defensive weapon system.

Its primary subsystems have been packaged in several transportable, semi-trailer-sized shipping containers, allowing it to be deployed to other test or operational locations.

The U.S. currently has no weapon systems capable of protecting soldiers or military assets involved in regional conflicts against short-range rocket attacks.

Conventional missile-based defense systems, such as the Army's Theater High Altitude Area Defense (THAAD) and Patriot Advanced Capability -3 (PAC-3), are designed to defend against longer range threats such as Scud missiles.

By comparison, tactical directed energy systems such as THEL/ACTD send out "bullets" at the speed of light, allowing them to intercept and destroy "last minute" or low-flying threats such as rockets, mortars or cruise missiles on a very short timeline.

"It's pretty hard to run from a laser," said Hannemann.

The THEL/ACTD was designed, developed and produced by a TRW-led team of U.S. and Israeli contractors for the U.S. Army Space & Missile Defense Command, Huntsville, Ala., and the Israel Ministry of Defence.

Requirements for the system have been driven in part by Israel, which needs to protect civilians living in towns and communities along its northern border against rocket attacks by terrorist guerrillas.

TRW has been engaged in laser research and development since the early 1960s. The company produces solid-state lasers for defense and industrial applications, and designs and develops a variety of high-energy chemical lasers for space, ground and airborne missile defense applications.

  • Concept of Operations
  • Tactical High Energy Laser
  • Inside the Pentagon Report
  • Lasers at TRW
  • Space Lasers at FAS

    Senate Adds Millions for ASAT, Space Laser
    By Frank Sietzen, Jr.
    Washington - May 18, 2000 - The Senate Armed Services Committee ended its FY2001 authorizations by boosting spending on military space programs and technologies by $98.2 million, chairman Sen. John Warner's office announced last week (R-VA.).

    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once

    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly

    paypal only

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.