. 24/7 Space News .
Ocean Circulation Shut Down by Melting Glaciers After Last Ice Age

The North Atlantic Ocean circulation system is very sensitive to freshwater inputs. That's because the Gulf Stream moves warm surface water from the equator north through the Atlantic, where the water cools, gets saltier due to evaporation and becomes very dense. By the time it approaches the coast of Newfoundland, or further northeast in the Norwegian Sea, it becomes dense enough to sink. This process is called overturning. The dense water then slowly travels through the deep water southward into the Southern hemisphere, with the return flow to the North occurring at the surface. Today, the climate of Western Europe is much warmer than equivalent latitudes of North America, because the Gulf Stream provides a lot of warmth to those parts of Europe. Chart by Deborah McLean, NASA

Greenbelt - Nov 19, 2001
At the end of the last Ice Age 13 to 11.5 thousand years ago, the North Atlantic Deep Water circulation system that drives the Gulf Stream may have shut down because of melting glaciers that added freshwater into the North Atlantic Ocean over several hundred years, NASA and university researchers confirm. Since the Gulf Stream brings warm tropical waters north, Western Europe cooled.

The National Science Foundation (NSF) funded study also finds that if a shutdown persisted for a long enough time, the entire Northern Hemisphere would eventually cool.

The computer model simulations of ocean and atmosphere processes used in this study imply a similar phenomenon has the potential to occur in the future due to freshwater additions from increased rain and snow caused by global climate change.

"For the first time, it is shown that realistic additions of glacial meltwater into the North Atlantic would have shutdown North Atlantic Deep Water production over a period of a few hundred years if the initial ocean circulation was somewhat weaker than that of today," said David Rind, lead author of the study and a senior climate researcher at NASA's Goddard Institute for Space Studies in New York, NY. The study appears in the November 16 issue of Journal of Geophysical Research - Atmospheres.

When Rind and his colleagues entered realistic estimates of freshwater from melting glaciers into their model, they found the North Atlantic circulation stopped completely after some 300 years. When the model was adjusted to make the circulation weaker than it is today, cessation of the Gulf Stream took only 150-200 years, matching current estimates based on paleo-climate records .

Freshwater additions into the ocean through the St. Lawrence River have a profound effect on the ocean circulation. "The more freshwater you add, and the longer you add it, the greater reduction in the North Atlantic circulation," Rind said. "According to our model, this is a linear response."

When the Gulf Stream moves warm surface water from the equator north through the Atlantic, the water cools, gets saltier due to evaporation and becomes very dense. By the time it approaches the coast of Newfoundland, or further northeast in the Norwegian Sea, it becomes dense enough to sink. This process is called overturning. The dense water then slowly travels through the deep water southward into the Southern Hemisphere, with the return flow to the north occurring at the surface.

But when freshwater gets mixed with the salty water in the North Atlantic, it makes the water less dense and slows the overturning process and the ocean circulation.

While the study finds that freshwater input could slow and stop overturning, this would not stop the Gulf Stream entirely. That's because the stream is partially pushed by winds. As a result, the model shows the reduced Gulf Stream would only transport about half as much heat northward, thereby cooling Western Europe. Were this to occur in a global warming scenario, it would act to partly counter the effects of projected greenhouse warming in parts of Western Europe.

Many scientists suspect more rainfall in parts of the Northern Hemisphere during this century as a result of greenhouse warming. That's because warmer temperatures increase the atmosphere's capacity to carry water. "The North Atlantic circulation may already be weakening due to freshwater rainfall additions associated with global warming," Rind said.

But the model shows a number of inconsistencies with previous studies on the last ice age. Those studies speculate that once freshwater stopped flowing, the ocean circulation would return within only a few decades, matching a rapid warming seen in the climate record. The model finds that deepwater circulation does not return for at least hundreds of years when the freshwater additions end. Also contrary to observations, the model showed cooling throughout the Northern Hemisphere; during the last ice age, the majority of the United States land mass did not appear to cool.

"It's hard to understand how parts of the Northern Hemisphere might have cooled to the magnitude suggested, but not North America," Rind said. "That seems to imply that either the paleo-records are being misinterpreted, or something else went on, something major that is not being accounted for. This isn't necessarily the end of the story."

Related Links
Goddard Space Flight Center
National Science Foundation
Search SpaceDaily
Subscribe To SpaceDaily Express

Climate Change In Atlantic Larger Than Previously Thought
Greenbelt - July 23, 2001
A NASA satellite confirms that overturning in the North Atlantic Ocean -- a process where surface water sinks and deep water rises due to varying water densities -- speeds up and slows down by 20 to 30 percent over 12 to 14 year cycles. Scientists previously believed that a change of this magnitude would take hundreds of years, rather than close to a decade.

Secret to Earth's 'Big Chill' Found in Underground Water
Rochester - Sept 6, 2001
Scientists studying the oceans depend on data from rivers to estimate how much fresh water and natural elements the continents are dumping into the oceans. But a new study in the Aug. 24 issue of Science finds that water quietly trickling along underground may double the amount of debris making its way into the seas. This study changes the equation for everything from global climate to understanding the ocean's basic chemistry.

Tropical Glaciers Formed While Earth Was Giant Snowball
Boston - May 29, 2001
Glacial deposits that formed on tropical land areas during snowball Earth episodes around 600 million years ago, lead to questions about how the glaciers that left the deposits were created. Now, Penn State geoscientists believe that these glaciers could only have formed after the Earth's oceans were entirely covered by thick sea ice.

New Research Documents Extremely High Atmospheric Carbon 14 During Last Ice Age
by Lori Stiles
Tucson - May 14, 2001
A team of American and British scientists report that radiocarbon levels in Earth's atmosphere during the last Ice Age were more than twice as high as today, higher even than the nuclear weapons tests of nearly half a century ago. They also reported in the May 11 issue of the journal Science of having extended the record for atmospheric radiocarbon more than 45,000 years.

Climate Wobble Linked To Rare Anomaly In Earth's Orbit
Santa Cruz - April 12, 2001
About 23 million years ago, a huge ice sheet spread over Antarctica, temporarily reversing a general trend of global warming and decreasing ice volume. Now a team of researchers has discovered that this climatic blip at the boundary between the Oligocene and Miocene epochs corresponded with a rare combination of events in the pattern of Earth's orbit around the Sun.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.