. 24/7 Space News .
Fuel Cells Might Get Hydrogen From Water, Organic Material

Mahdi Abu-Omar.
by Chad Boutin
West Lafayette IN (SPX) Sep 02, 2005
A novel technique for producing hydrogen from water and organic material has been found recently at Purdue University, a discovery that could help speed the creation of viable hydrogen storage technology.

Though the method has not yet been evaluated for economic feasibility on a large scale, chemist Mahdi Abu-Omar said it could offer solutions to several problems facing developers of fuel cells, which are looked upon as a potential replacement to fossil-fuel burning engines in automobiles.

The technique requires only water, a catalyst based on the metal rhenium (REE-nee-um) and an organic liquid called an organosilane, which can be stored and transported easily.

"We have discovered a catalyst that can produce ready quantities of hydrogen without the need for extreme cold temperatures or high pressures, which are often required in other production and storage methods," said Abu-Omar, an associate professor of chemistry in Purdue's College of Science. "It is possible that this technique could lead to fuel cells that are safe, efficient and not dependent on fossil fuels as their energy source."

Abu-Omar's research team, which includes Purdue's Elon A. Ison and Rex A. Corbin, published their findings today (Wednesday, Aug. 31) in the Journal of the American Chemical Society.

Hydrogen is the most plentiful element in the universe and, once isolated, is a clean-burning fuel that produces neither greenhouse gases nor toxic emissions. Because hydrogen can be used for electricity production, transportation and other energy needs, many see a changeover to a "hydrogen economy" from our oil-based one as the solution to global energy problems.

But before hydrogen can be used as fuel, it must be extracted from other substances that are often fossil fuels, and then stored safely in sufficient quantities. If these problems can be solved, hydrogen-powered generators, known as fuel cells, might replace internal combustion engines everywhere from electrical plants to cars.

Abu-Omar and his colleagues were not concentrating on these problems when they began studying organosilanes, a group of organic molecules that have been slightly modified in the laboratory. But as commonly happens in science, he said, a project often takes researchers in different directions than originally anticipated.

"Initially, we were concerned with finding useful catalysts to convert these silicon-based fluids into silanols, another type of substance that is valuable in the chemical industry," he said. "It's the sort of work chemists do all the time, and it's usually of interest only to other chemists. But sometimes the byproducts of conversions are as interesting as what you wanted in the first place."

Abu-Omar's team took a compound based on rhenium, a comparatively rare metal often obtained while mining copper, and added it to the organosilane in the presence of water. Over the course of an hour, the organosilane changed completely into silanol, leaving the water and rhenium catalyst unchanged. But the team also noticed there was a gas bubbling from the mixture.

"It turned out to be pure hydrogen," Abu-Omar said. "The reaction is not only efficient at creating silanol, but it also generates hydrogen at a high rate in proportion to the amount of water."

The team estimates that about 7 gallons each of water and organosilane could combine to produce 6 1/2 pounds of hydrogen, which could power a car for approximately 240 miles.

"The big question is, of course, whether it would be economically viable to create organosilane fuels in the quantities necessary to power a world full of cars," Abu-Omar said. "As of right now, there simply isn't enough demand to make more than small volumes of this liquid, and while it's a relatively easy process, it's not dirt cheap either."

But, Abu-Omar speculated, producing organosilanes in larger quantities would bring the price down, and the byproduct � silanol � also could be recycled or sold to lessen the overall cost.

"On today's chemical market, silanol is even more expensive than organosilanes are, but their value would of course decline as well if there were suddenly millions of gallons of them on the market," he said.

"These are the sorts of questions that economists would have to look at, and we have other questions of our own, such as whether these reactions can be carried out on naturally occurring hydrogen sources."

Abu-Omar said this question might prove to be the more relevant one as investigations continue.

"I think the big point here is that hydrogen can be produced from water and a form of organic matter," he said. "If this rhenium-based catalyst can do the trick on organosilanes, perhaps we can find other catalysts that can generate hydrogen from garbage, or from biomass left over from the harvest."

The current findings, he said, demand that the method be scrutinized more carefully.

"For now, we've demonstrated the initial premise that we can produce and store hydrogen on demand with this method," he said. "It's a great start, but we need to know more about the economic and ecological price of doing this on a larger scale."

Abu-Omar is affiliated with Purdue's new Energy Center in Discovery Park. The center will focus on developing economically and environmentally sound energy sources, and on helping to change policies and perceptions about the way we use energy. More than 75 campus experts in disciplines from engineering, science, agriculture and liberal arts will contribute to the effort.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Katrina Lays Bare US Refinery Crisis
Washington (AFP) Sep 01, 2005
Hurricane Katrina has shut down 10 percent of US refinery capacity at the worst possible time when oil facilities were already straining to cope with booming summer demand.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.