| . | ![]() |
. |
Madison - Dec 11, 2003 As utility companies search for ways to avoid blackouts, like the one that shut down the northeastern corner of the United States last summer, one idea comes from UW-Madison. Researchers from the College of Engineering have designed a system where a small network of local generators can reliably disconnect from the rest of the power supply, enabling locations where electricity is critical to stay in operation. Most buildings receive their electrical power from transmission lines branching off a main power grid. With energy coming from a large network -- the one responsible for the August 2003 blackout stretched 157,000 miles -- any disruption could cause a cascade of powerlessness in cities near and far. Because the new technology developed at UW-Madison receives its power locally, it can "leap frog" transmission lines, avoiding any failures within those lines, says lead inventor Robert Lasseter, professor emeritus of electrical and computer engineering. The UW-Madison technology consists of a microgrid, a small network of several power generators located at a single site. These generators, integrated into the main energy distribution system, encompass a wide range of power sources, including micro-turbines, gas internal combustion engines, fuel cells and photovoltaic, which generates voltage from light exposure. When problems occur within the transmission lines, the generators and their loads (the devices each one powers) can separate from the main distribution system to isolate particular areas -- hospital rooms or factory floor, for example -- from the disturbance. Explains Lasseter: "The critical loads in a microgrid can ride through any event. That means they can stay alive when the grid fails." The ability to "island" generators and electrical loads together, he adds, has the potential to provide higher local power reliability than that provided by the distribution system as a whole. But providing this reliability requires more than separating the microgrid from the main power system, says Lasseter. Drops in voltage, even from generators in a small network, can lead to fluctuations in power that shut down equipment or recalibrate machinery. These are the types of costly problems that businesses want to avoid during a blackout, Lasseter adds. To dodge these fluctuations, the Wisconsin engineer and his graduate student, Paolo Piagi, have fit the generators in the migrogrid with voltage source inverters -- a power electronic device that allows each generator to regulate voltage, thereby regulating electric current and the energy it produces. Besides sidestepping possible power outages, the microgrid system is more energy efficient. All generators -- whether part of a utility plant or small building -- produce more waste heat than electricity. However, smaller generators, such as those in Lasseter's microgrid network, can easily be placed in areas that need to be heated, says the Wisconsin engineer. This placement of the generators and the waste heat they produce, he adds, can bump up the amount of usable energy to nearly 90 percent, and can do so without the use of complex heat distribution systems, such as steam and chilled water pipes. Lasseter and his UW-Madison colleagues are discussing a project to build a working microgrid with the California Department of Energy and the national laboratories of Sandia, Oak Ridge and Lawrence Livermore. The project would simulate the possible use of a microgrid at a small factory. The microgrid design is patented by the Wisconsin Alumni Research Foundation, a non-profit organization that patents and licenses intellectual property for the university. Related Links University of Wisconsin-Madison SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express
Boston - Dec 09, 2003A new way to manufacture a low-cost superconducting material should lead to cheaper magnetic resonance imaging machines and other energy-efficient applications, say Los Alamos National Laboratory scientists. Hot isostatic pressing of wires made of magnesium diboride, or MgB2, significantly increased the amount of electrical current the wires can carry without electrical resistance.
|
| ||||||||||
| The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |