![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Early in the morning of June 30, 1908, in the Tunguska region of Siberia about 1,000 km (600 miles) north of Irkutsk, an asteroid about 60 meters (200 ft) in diameter entered the Earth's atmosphere, resulting in an immense explosion, centered about 8 km (5 miles) above the forest below. Trees were flattened over an area about 50 km (30 miles) in diameter, several times larger than the area encircled by the Beltway around Washington, D.C. It exploded with energy in the range of a modern nuclear missile warhead, about 10 megatons, or about 500 times the energy of the Hiroshima atomic bomb. While there were few, if any, casualties from this event, if such an event were to occur in a more populated area it would be a major natural disaster, comparable to a major flood, earthquake or volcanic eruption. For this reason there is considerable interest in assessing just how often such an event might be expected to occur. Since the last one was about a century ago, it has often be supposed that the answer is "about once a century," but this is not necessarily so. Perhaps this "Tunguska event" was an unusually recent, or maybe they occur even more often on average, and we have just be lucky in the last 94 years. The Near-Earth asteroid surveys in progress for the last few years (LINEAR, NEAT, LONEOS and others) are aimed mainly at discovering larger asteroids that would cause major but far less frequent damage. They also discover many smaller asteroids in the "Tunguska" size range, presenting an opportunity to assess the frequency of these smaller events. Even smaller objects pose no direct danger, as they explode higher in the atmosphere and produce little if any ground damage. The population of near-Earth asteroids (NEAs) down to ~1 km (half a mile) in diameter is reasonably well determined. Planetary scientists now estimate that there are about 1,000 such NEAS equal to or larger than 1 km in diameter, with a resulting impact frequency of about once per half million years. However, in the size range of the "Tunguska event" NEAS (diameter ~50-75 m), estimates of population, or equivalency of impact frequency, range from once per 200 years to once per 10,000 years. The LINEAR survey has now discovered ~30 NEAS in the "Tunguska" size range; thus a better estimate is possible. Moreover, for small NEAS, a very large simulation is needed to obtain even a few "detections" in the computer model. Dr. Alan Harris of the Space Science Institute in Boulder, CO., recently compiled a new simulation for objects from about 200 m to about 0 m in diameter, dividing them into six size bins. By comparing his relative populations with the absolute population estimates of Stuart (Science 294, 1691-1693, 2001) in his two smallest size bins, Harris extends Stuart's curve through the size range of "Tunguska" objects. He finds a population of the order of half a million objects in this size range, corresponding to an expected impact interval of the order of once per thousand years. This estimate is uncertain by a factor of about 3, largely due to uncertainty in the actual size of the Tunguska event. This new estimate of the impact frequency of "Tunguska-sized" events is considerably less than has often been supposed. If correct, it means that the Tunguska event having happened so recently is unusual, although not extraordinarily so, and that the risk of such events in the future is a few times less than has been assumed. This is not to say that there is no danger at all. Impacts are random events, so it is not possible to say that we are "about due" for another, or that since one happened so recently that another won't happen soon. All we can say is that the odds are less than had been often quoted based on the assumptions that such things happen about once a century or even more often. Related Links Space Science Institute SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() A Cornell University astronomer told a House of Representatives space subcommittee today that Washington should spend $125 million for a new type of ground-based telescope that could detect hundreds of asteroids and numerous comets that pose a potential threat to the Earth from space over the next century. Earth In Never Ending Game Of Cosmic Roulette With Asteroids ![]() Scientists are making progress in cataloguing and tracking large near-earth objects (NEOs), but a serious threat still remains from smaller objects, an expert panel told the Space and Aeronautics Subcommittee today. Near-Earth Objects Pose Threat, General Says ![]() This summer, much of the world watched as India and Pakistan faced-off over the disputed Kashmir region, worried that the showdown could escalate into a nuclear war.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |