. 24/7 Space News .
Switching One Light Beam With Another Key To Photonic Chips

Scanning electron microscope photo of a ring resonator coupled to two straight waveguides. By making the resonator either transparent or opaque to a particular wavelength of light, a photonic circuit could control whether or not the light passes from one straight waveguide to the other.
Ithaca NY (SPX) Oct 28, 2004
Cornell University researchers have demonstrated for the first time a device that allows one low-powered beam of light to switch another on and off on silicon, a key component for future "photonic" microchips in which light replaces electrons.

Photonics on silicon has been suggested since the 1970s, and previous light-beam switching devices on silicon have been demonstrated, but they were excessively large (by microchip standards) or have required that the beam of light that does the switching be very high-powered.

The approach developed by Michal Lipson, Cornell assistant professor of electrical and computer engineering, confines the beam to be switched in a circular resonator, greatly reducing the space required and allowing a very small change in refractive index to shift the material from transparent to opaque.

The advancement of nanoscale fabrication techniques in just the past few years has made it possible to overcome some of the traditional limitations of silicon photonics, Lipson said. Photonic circuits will find their first application in routing devices for fiber-optic communications, she suggests.

At present, information that travels at the speed of light through optical fiber must be converted at the end into electrical signals that are processed on conventional electronic chips, then in many cases converted back into optical signals for retransmission, an extremely slow process. The all-optical switch makes it possible to route these signals without conversion.

The all-optical switch is described in the Oct. 28 issue of the journal Nature by Lipson and members of the Cornell Nanophotonics Research Group, which she directs. The researchers used the facilities of the Cornell NanoScale Facility to manufacture the devices on silicon chips.

"It is highly desirable to use silicon -- the dominant material in the microelectronic industry -- as the platform for these photonic chips," they said in their paper. The group already has developed other components for silicon photonic chips, including straight and curved waveguides. One of the key components needed, however, is a way for one optical signal to switch another on or off.

Lipson's optical switch is based on a ring resonator, a device already familiar to photonics researchers. When a ring-shaped waveguide is placed tangent to a straight one, photons traveling along the straight waveguide are diverted into the ring and travel around it many times, but only if they match the resonant frequency of the ring, which is determined by its circumference.

For the reported experiments, the researchers created a ring 10 micrometers in diameter with a resonance wavelength of 1,555.5 nanometers, in the near infrared.

To turn the switch off, they pumped a second beam of light in the same wavelength range through the system. This light is absorbed by the silicon through a process known as two-photon absorption, creating many free electrons and "holes" (positively charged regions) in the material.

This changes the refractive index and shifts the resonant frequency of the ring far enough that it will no longer resonate with the 1,555.5-nanometer signal. The process can theoretically take place in a few tens of picoseconds, the researchers said.

A similar effect can be used in a straight waveguide, but it requires a fairly long distance. Because light travels many times around the ring, the scattering effect is enhanced and the signal can be controlled in a very small space.

For routing applications, Lipson said, a ring resonator coupled to two waveguides could be used. The second waveguide would receive a signal only when the resonator is switched on. She noted that there is very little loss of light in the ring, meaning that light coming into a routing device could be "recycled" and sent on its way with no additional amplification needed.

Ring resonators also could be used as tunable filters, the researchers suggest, for example to separate the many wavelengths of light in multiplexed optical fiber communications systems.

The Nature paper is titled "All-optical switch on silicon: Controlling light with light on chip." Co-authors are Vilson Almeida, a former Cornell graduate student now in the Institute for Advanced Studies in the Technical Center of the Brazilian Air Force; Carlos Barrios, former Cornell postdoctoral researcher and now a scientist in the Nanophotonics Technology Centre, Universidad Polit�nica de Valencia, Spain; and Roberto Panepucci, former Cornell research associate now an assistant professor at Florida International University.

Previous work on nanoscale optical waveguides and photonic coupling is described in a paper, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," published in the Institute of Physics journal Nanotechnology , Aug. 2, 2004.

Related Links
Nano Photonics at Cornell
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Researchers Guide Light Through Liquids And Gases On A Chip
Santa Cruz CA (SPX) Oct 19, 2004
Researchers at the University of California, Santa Cruz, have reported the first demonstration of integrated optical waveguides with liquid cores, a technology that enables light propagation through small volumes of liquids on a chip. The new technology has a wide range of potential applications, including chemical and biological sensors with single-molecule sensitivity.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.