. 24/7 Space News .
Scientists Bring Quantum Optics To A Microchip

chips for the 21st century
New Haven CT (SPX) Sep 09, 2004
A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom").

This represents a new paradigm in which quantum optics experiments can be performed in a micro-chip electrical circuit using microwaves instead of visible photons and lasers.

The work is a collaboration of the laboratory of Professor Robert Schoelkopf and the theory group of Professor Steven Girvin in the Departments of Applied Physics and Physics at Yale University.

The Yale researchers have constructed a miniaturized superconducting cavity whose volume is more than one million times smaller than the cavities used in corresponding current atomic physics experiments.

The microwave photon is, therefore, "trapped" allowing it to be repeatedly absorbed and reemitted by the 'atom' many times before it escapes the cavity. The 'atom' is a superconducting circuit element containing approximately one billion aluminum atoms acting in concert.

Because of the tiny cavity volume and large 'atom' size, the photon and 'atom' are very strongly coupled together and energy can be rapidly exchanged between them.

Under the peculiar rules of quantum mechanics, the state of the system becomes a coherent superposition of two simultaneous possibilities: the energy is either an excitation of the atom, or it is a photon. It is this superposition that was observed in the Yale experiment.

In addition to allowing fundamental tests of quantum mechanics and quantum optics in a completely new format, this new system has many desirable features for a quantum computer.

In a quantum computer the bits of information are replaced by qubits (e.g. an atom), which, paradoxically, can harness quantum uncertainty to vastly speed up certain types of calculations.

The ability to couple qubits to photons, demonstrated by the Yale group, could allow qubits on a chip to be wired together via a "quantum information bus" carrying single photons.

Related Links
Yale University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Celeritek Announces A New 1 Watt GaAs Power Amplifier Chip Operating From 2 To 20 GHz
Santa Clara CA (SPX) Aug 17, 2004
Celeritek, a supplier of hi-rel GaAs-based components for the defense, wireless infrastructure, test instrumentation and satellite marketplace, announced Monday the availability of the CMM0016-BD, a 1 Watt, GaAs MMIC power amplifier operating in the frequency range of 2.0 to 20.0GHz.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.